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1. Introduction

From the Condorcet jury theorem to the more recent literature on strategic voting (e.g.,
Austen-Smith and Banks 1996; Feddersen and Pesendorfer 1997), much has been said
about voting as a mechanism of aggregating private information to reach a common de-
cision. Most collective decision processes, however, involve more than simply casting a
vote. There is typically a deliberative stage when members of the group jointly grapple
with the issues and try to explore the best option to take. Consider a standard-setting
committee formed by a group of firms deciding on what technological platform to adopt.
Engineers from the companies as well as outside experts will test and openly discuss the
strengths and weaknesses of the proposed standards and perhaps come up with ways
to improve them. Similarly, countries deciding on whether and how to cut greenhouse
gas emissions will engage a panel of scientists to gather evidence to guide their actions.
In jury decision-making, even though the evidence is already presented at trial, one can
think of the jury deliberation stage as the process by which jurors together examine and
learn from the evidence to form an opinion for a verdict.1

While a committee cannot wait forever until the evidence becomes unequivocal, the
quality of collective decisions will suffer if they are reached hastily. A controversial issue
in the climate change debate, for instance, is precisely about how much scientific ambi-
guity we should tolerate before taking concrete actions. How do group members with
divergent interests reach a collective decision when they have the option to collect more
information to shed light on the issues? Under what circumstances will decisions be made
too hastily? Among other things, answers to these questions are relevant for the design of
collective decision-making rules. When comparing majority rule to super-majority rule in
The Federalist No. 58, James Madison acknowledged that the super-majority requirement
“might have been an additional shield to some particular interests, and another obstacle
generally to hasty and partial measures” (Hamilton et al. 1982, p. 298), though he favored
majority rule on other grounds.

The trade-off between the cost of collecting additional information and the benefit
from making a more informed decision is a classic problem in statistics. Abraham Wald
(1947) was the first to study a model of sequential sampling in which an individual
decision-maker has to choose between collecting more information (at a cost) and de-
ciding in favor of one of two alternative hypotheses. The solution takes the form of a
stopping rule and is characterized by two thresholds. If the accumulated evidence in
terms of the likelihood ratio crosses an upper threshold, then one action should be taken.
If the accumulated evidence crosses a lower threshold, then the alternative action should

1In their classic study of the American jury, for example, Kalven and Zeisel (1966) find that the length of
jury deliberation is positively related to the length of the trial, indicating that learning from the evidence is
a time-consuming process.
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be taken. Otherwise, the decision-maker should keep searching for more information.2

In this paper we adapt Wald’s framework to study a deliberation game where the stop-
ping decision is made collectively. In our model, a group of agents must choose between
two alternatives. Members of the group have different preferences for the alternatives as
well as different discount rates. At each moment each member of the group votes for one
of the two alternatives or abstains. The game ends when a sufficient number of agents
vote for one of the alternatives. Meanwhile, members continuously update their beliefs
about the relative merit of the alternatives as new information arrives publicly. Just as in
the single-agent case, each voter’s strategy is characterized by two thresholds: he votes
for one alternative if his belief reaches beyond an upper threshold, votes for the other al-
ternative if his belief falls below a lower threshold, and abstains otherwise. However, the
thresholds adopted by an agent will typically be different from what he would have cho-
sen were he the sole decision-maker. In a collective decision the influence of each agent
is constrained by the decisions of others. Since the optimal upper threshold for a person
depends on where the lower threshold is, strategic interactions in the stopping decisions
are important. As is standard in voting games, our model contains a plethora of Nash
equilibria where no single individual has any influence on the outcome. We find that
multiple equilibria may exist besides these trivial equilibria. Thus, expectation can play
an important role in the deliberation process. Agents may decide slowly if they expect
others are taking their time, but they may also rush to a decision to preempt others from
prematurely reaching a different decision.

A particularly striking result is that, under majority rule, mutual expectations of quick
decisions may cause an alternative to be chosen almost instantaneously in equilibrium,
as long as there is at least one agent in the group who is extremely impatient. We show
that this near collapse of deliberation can be avoided by a super-majority rule. Moreover,
the impacts of impatient voters and patient voters on the equilibrium amount of group
deliberations are not symmetric: the presence of one extremely patient agent will not
cause the group to deliberate without end under super-majority rule (unless unanimity
is required). In this sense, super-majority rule can be an effective shield against hasty
decisions. If voters can choose the decision-making rule, there are environments in which
super-majority rule is preferred to simple majority rule by a majority of voters.

Agents may rush to a decision because the strategic effects of waiting are non-monotone.
Specifically, if an agent thinks that one of the alternatives would be adopted by the group
with too little evidence (relative to his unconstrained optimal threshold), his best response
is to vote to adopt the other alternative with insufficient evidence as well. Furthermore, in
this case, accelerating the adoption of one alternative would induce him to vote to adopt
the other alternative earlier: the two stopping decisions are strategic complements. But

2Wald and Wolfowitz (1948) showed that this “sequential probability ratio test” is optimal in the sense
that it requires on average the least observations among all tests with the same power. Wald’s original
contribution has been extended in numerous directions. See, for example, Siegmund (1985).
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if the agent thinks that one alternative would be adopted with excessive deliberations,
his best response is again to vote to adopt the other alternative earlier (relative to his un-
constrained optimal threshold). Furthermore, in this case, delaying the adoption of one
alternative causes the agent to accelerate his adoption of the other alternative: the two
stopping decisions are strategic substitutes. Intuitively, whenever the threshold for the
adoption of one alternative deviates away from its unconstrained optimal value in either
direction, the payoff from waiting falls relative to the immediate payoff from taking the
other alternative. Therefore, the agent responds by stopping earlier for the other alterna-
tive.

This non-monotonicity means that, for each agent, his best-response upper thresh-
old is always below the unconstrained optimal value. Similarly, his best-response lower
threshold is always above the unconstrained optimal value. In other words, individu-
als respond to a loss of control over the adoption of one alternative by cutting short the
deliberation before adopting the other alternative. Because of heavy discounting, a very
impatient voter is willing to stop to take one alternative (say, α) at almost any state of
evidence. Another voter, who is less impatient, may be prepared to wait for more in-
formation before deciding in favor of β if he were the sole decision-maker. But when
he faces the impatient voter, this voter will want to stop immediately for his favored al-
ternative β lest the evidence swings the other way and α is adopted prematurely by the
impatient voter if the impatient voter is pivotal. Our paper shows that, under majority
rule, an extremely impatient voter is indeed pivotal for one of the alternatives, so that the
strategic complementarity that we describe leads to an almost complete collapse of group
deliberations. Under super-majority rule, on the other hand, extremely impatient voters
will be pivotal only when there is a sufficiently large number of them. Therefore, a suit-
ably chosen super-majority rule can avoid the collapse of group deliberations when the
group contains a few very impatient members. Moreover, super-majority rules are robust
to the presence of a few extremely patient members in the group. Since a very patient
agent does not want to stop until the evidence is very strong one way or the other, he
is seldom pivotal in the stopping decision unless the super-majority rule requires almost
unanimous agreement.

Our paper does not claim that super-majority rule is always better than majority rule.
Indeed, when there is heterogeneity only in the preference dimension or only in the dis-
count rate dimension, majority rule is preferred to super-majority rule by a majority of
voters. With heterogeneity in both dimensions, however, super-majority rule can be a
more robust decision-making mechanism in the presence of a few impatient voters, be-
cause it can prevent the possibility of a collapse of deliberations. Even in equilibria where
deliberation does not collapse, the presence of impatient voters in the group may still pro-
duce too little deliberation under majority rule. A super-majority rule errs on the other
side. By requiring the consent of more agents before reaching a decision, it tends to pro-
duce too much deliberation. However we use a stylized example to illustrate that too
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much deliberation under super-majority rule can be a lesser evil than insufficient deliber-
ation under majority rule. In the example, even though neither majority rule nor super-
majority rule induces the first-best outcome, almost all the agents (except the impatient
ones) prefer super-majority rule to majority rule when their belief is relatively neutral.

The acquisition of public information during the decision-making process is an im-
portant but relatively unexplored area of research. The bulk of the existing economics
literature focuses on the incentives of committee members to acquire or reveal private in-
formation. Some papers (e.g., Coughlan 2000; Ottaviani and Sorensen 2001; Krishna and
Morgan 2004; Austen-Smith and Feddersen 2006) model group deliberations as cheap talk
that may potentially overcome the strategic information revelation problem. A different
strand of the voting literature considers the free-riding problem that committee members
face when they collect their individual pieces of information (e.g., Li 2001; Martinelli 2007;
Koriyama and Szentes 2009). We depart from these papers in that information acquisition
is modeled as a joint decision made by the committee and that the evidence so produced
is public. Not only is this kind of public learning an important feature of many collective
decision procedures, but it also allows us to abstract away from issues arising from pri-
vate information and directly address the question of whether decisions are made with
too much haste or with undue delay.3

Our paper is related to recent contributions that adopt a collective search approach
(Albrecht, Anderson and Vroman 2010; Compte and Jehiel 2010; 2011; Moldovanu and
Shi 2010).4 In these papers, a new alternative appears every period, and the group’s de-
cision is whether to adopt that alternative or to continue with search. In our paper, the
alternatives are fixed but new information about the existing alternatives appears over
time, and the group’s decision is when to stop collecting evidence and decide which al-
ternative to adopt. In our model, when the two thresholds are controlled by two different
agents, each agent will also become “less picky” and adopt an alternative earlier than he
would when both thresholds were under his control. Similarly, Albrecht, Anderson and
Vroman (2010) find that in a heterogeneous search committee, each committee member
will apply a lower acceptance standard than what he would have were he the sole de-
cision maker. However, because the search process does not yield any new information
about existing alternatives, no agent will ever change his mind and support an alternative
that he previously rejected, as an impatient agent may do in our model. As a result, in
their model having one committee member who is willing to accept any proposal will not
cause the rest of the committee to stop searching entirely.

3Damiano, Li and Suen (2010) study a model in which delay cost induces people to reveal their private
information over time. There is no new information that arrives during this process, and in their model
decisions which are made earlier in equilibrium are always better than decisions which are made late.

4Also related are the papers by Strulovici (2010) and Messner and Polborn (2008), which explore collec-
tive decision-making problems when individuals have the option to learn about their own preferences over
time.
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Still more closely related to our paper are Gul and Pesendorfer (forthcoming) and
Lizzeri and Yariv (2011). Gul and Pesendorfer (forthcoming) studies the competition
between two political parties to provide information that may influence voters’ choice.
Each party’s decision is characterized by a stopping rule, and these stopping decisions
are strategically linked. Our paper studies the strategic interactions of the stopping deci-
sions, but in the context of group decision-making. We also emphasize the disproportion-
ate influence that a few impatient agents may have on the entire group. Lizzeri and Yariv
(2011) adopts Wald’s framework to study committee deliberations.5 Their emphasis is
on the interaction between voting rules and deliberation rules, and they identify factors
(e.g., greater preference heterogeneity, larger super-majority requirements) that lead to
greater deliberations. Our focus is on the non-monotonic nature of the strategic interac-
tions among voters. We provide necessary and sufficient conditions for equilibrium, and
identify the possibility of non-trivial multiple equilibria. We also emphasize voter hetero-
geneity in more than one dimension, and show how majority rule may not be a robust
decision-making mechanism in the presence of a few impatient voters.

2. Information Acquisition in Collective Decision-Making

A group of 2m − 1 agents are choosing between two alternatives, α and β. The payoff
to each action depends on the underlying state ω ∈ {A, B}. In state A, agent i’s payoff
from α is 1, and his payoff from β is 0. In state B, agent i’s payoff from α is 0, and his
payoff from β is evi . Hence vi denotes the intensity of agent i’s preference for β relative
to α. Without loss of generality, we assume that vi increases weakly in i. The agents do
not observe the state, but they share a common prior belief. It is convenient to represent
the belief about the states by the log ratio of the probabilities of the two states. We let
θ0 = log(Pr[ω = A]/ Pr[ω = B]) represent the initial belief. With this parameterization,
the probability of state A is given by eθ/(1 + eθ) when the belief is θ. The immediate
expected payoff from choosing α is higher than that from choosing β for agent i if and
only if θ ≥ vi.

We model the group decision-making process in continuous time. At each time t, each
agent independently votes for α or β, or abstains. We focus on the class of majoritarian
decision rules. Under decision rule k ∈ {m, m + 1, . . . , 2m− 1}, an alternative is adopted
at time t if it is supported by k agents or more. The decision process (i.e., voting) contin-
ues if neither α nor β receives sufficient votes. The decision rule k = m corresponds to
majority rule; k > m is a super-majority rule, with k = 2m− 1 being the unanimity rule.
Each agent i discounts the future at a rate ri. If an alternative is chosen at time t, then
agent i’s payoff is discounted by the factor e−rit. In general, agents are heterogeneous in

5Other papers that uses Wald’s framework in the economics literature include Moscarini and Smith
(2001), which studies how a single decision-maker should alter the level of experimentation; Brocas and
Carrillo (2009), which analyzes the option value of risky alternatives; and Sobbrio (2010), which considers
the incentive of news editors to collect news.
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both the preference dimension vi and the impatience dimension ri.

We abstract away from the issue of information disclosure by assuming that infor-
mation is publicly observed by the group. It is common in economics to model the cost
of information acquisition through discounting. So we assume that information arrives
exogenously and continuously as long as an alternative has not yet been chosen by the
group. One interpretation is that the group continues to incorporate new information and
viewpoints as members keep deliberating on the merits of the two alternatives.6

The arrival of information is represented by a Wiener process dS that has a positive
drift µ and an instantaneous variance ρ2 if the state is A, or drift −µ and instantaneous
variance ρ2 if the state is B. For any time t > 0, the accumulated evidence St is a suffi-
cient statistic for all the information that has arrived before t. The log-likelihood ratio of
observing St = s under the two states is

log
h((s− µ)/ρ)

h((s + µ)/ρ)
=

2µs
ρ2 ,

where h(·) is the standard normal density function. Hence a higher observed value of the
accumulated evidence St is stronger evidence in favor of state A. Bayes’ rule says the log
posterior probability ratio is equal to the sum of the log prior probability ratio and the
log-likelihood ratio. So, if we let S′t = 2µSt/ρ2, the common belief of the group at time t
is given by:

θt = θ0 + S′t.

Denote µ′ ≡ 2µ2/ρ2. The re-defined process dS′ is a Wiener process with drift µ′ and
instantaneous variance 2µ′ under state A, or drift −µ′ and instantaneous variance 2µ′

under state B.7 A higher value of µ′ (higher µ or lower ρ) indicates a more informative
deliberative process.

The crucial assumption here is that information is publicly observed and every agent
has the same model of the world (i.e., uses the same likelihood function). As a result, ev-
ery agent updates his belief in the same way during the information acquisition process.
The assumption of common prior is not important. If agent i has prior belief θi

0 6= θ0, we
can simply re-define his prior to θ0 and his preference parameter to vi + θ0 − θi

0.

If agent i were to make the decision alone, this would be a standard problem in optimal

6In the final section of this paper, we discuss another possible formulation of this model in which agents
have to pay to keep information coming, and provide an alternative interpretation of impatient agents as
voters with low stakes in the decision concerned.

7The same equation for the belief evolution can be obtained through a Brownian motion approximation
to a model with discrete time and binomial signals. Specifically, let the length of each period be dt. Suppose
there is a binary signal each period that indicates the state is A with probability 1/2 +

√
µ′dt/8 when the

true state is A, or with probability 1/2−
√

µ′dt/8 when the true state is B. Then the total number of excess
signals for A at time t converges to our diffusion process S′t as dt goes to zero.
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stopping. The solution to this problem is well known: there exists two threshold beliefs,
denoted g∗i and G∗i , such that agent i should choose α if θt ≥ G∗i ; he should choose β

if θt ≤ g∗i ; and he should wait for more information if θt ∈ (g∗i , G∗i ). In the context of
collective decision-making, in principle an agent’s decision at time t could be a function
of the whole sample path of St, his own decisions, and other agents’ decisions prior to
t. However, since for any agent i the difference between the expected payoffs of α and β

depends solely on the current belief θt and is strictly increasing in it, we focus exclusively
on equilibria in which agents adopt Markov cutoff strategies. Formally, let

Σ ≡
{
(g, G) ∈ <2 | g ≤ G

}
denote the set of all cutoff strategies. For gi < Gi, strategy σi = (gi, Gi) means voting for
α when θt ≥ Gi, voting for β when θt ≤ gi, and abstaining when θt ∈ (gi, Gi). For gi = Gi,
strategy (gi, Gi) means voting for α when θt ≥ Gi and voting for β when θt < gi.

Figure 1 depicts the agents’ cutoffs in a group of three individuals with decision rule
k = m = 2. In this figure, α is adopted when θt reaches G1, and β is adopted when θt

reaches g2. More generally, for any strategy profile σ = (σ1, . . . , σ2m−1), let

G[k](σ) = min {θ | #{i|θ ≥ Gi} ≥ k}

denote the smallest belief for which at least k agents vote for alternative α, and let

g[k](σ) = max {θ | #{i|θ ≤ gi} ≥ k}

denote the largest belief for which at least k agents vote for alternative β. Under decision
rule k, if G[k](σ) > g[k](σ), then α will be adopted by the group when θt ≥ G[k](σ) and
β will be adopted when θt ≤ g[k](σ). If G[k](σ) = g[k](σ), then α is adopted when θ ≥
G[k](σ) and β is adopted when θt < g[k](σ).

Let ui(g, G | θ) represent the payoff to agent i when the belief is θ and the stopping
boundaries for α and β are G and g, respectively. Let the random variable T denote the
first time the updated belief θt hits g or G given that the current belief is θ. We have:

ui(g, G | θ) =


eθ

1+eθ if θ ≥ G,
eθ

1+eθ Ψi(g, G | θ; A) + evi

1+eθ ψi(g, G | θ; B) if θ ∈ (g, G),
evi

1+eθ if θ ≤ g;
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g1 g2 g3 G2 G1 G3
θ

Ig(3;σ) IG(3;σ)

Ig(2;σ) IG(2;σ)

Ig(1;σ) IG(1;σ)

Figure 1. Cutoffs and spans of control

where, for ω ∈ {A, B},

Ψi(g, G | θ; ω) ≡ E
[
e−riT | θT = G, θ0 = θ; ω

]
Pr [θT = G | θ0 = θ; ω] , (1)

ψi(g, G | θ; ω) ≡ E
[
e−riθT | θT = g, θ0 = θ; ω

]
Pr [θT = g | θ0 = θ; ω] . (2)

When θ ∈ (g, G), agent i’s payoff would depend on which threshold is reached first and
on the length of time it takes to reach it. In (1), Pr[θT = G | θ0 = θ; ω] is the probability
that θt reaches G before g in state ω, and E[e−riT | θT = G, θ0 = θ; ω] is the expected
discount factor conditional on state ω and on θt reaching G before g. Explicit forms for
the Ψi and ψi functions can be obtained from the analysis of first passage time in the
theory of Brownian motion.8 These formula are standard in the literature (Stokey 2009,
Proposition 5.3; see also Cox and Miller 1965, pp. 210–213):

Ψi(g, G | θ; A) =
e−R1(θ−g) − e−R2(θ−g)

e−R1(G−g) − e−R2(G−g)
, (3)

ψi(g, G | θ; B) =
e−R1(G−θ) − e−R2(G−θ)

e−R1(G−g) − e−R2(G−g)
; (4)

with

R1 =
1
2

(
1−

√
1 +

4ri

µ′

)
, R2 =

1
2

(
1 +

√
1 +

4ri

µ′

)
. (5)

Note that R2 > 1, R1 < 0, and R1 + R2 = 1. In general the values of R1 and R2 depend on

8Equivalently, the functions Ψi and ψi can be obtained by stochastic calculus. For θ in the waiting region
(g, G), the payoff function satisfies ui(g, G | θ) = e−ridtE [ui(g, G | θ + dS′)]. Since dS′ is a diffusion process
with expected drift µ′(eθ − 1)/(1 + eθ) and instantaneous variance 2µ′, we can use Ito’s lemma to derive a
differential equation in ui. Solving this differential equation and imposing the value-matching condition at
the boundaries of the waiting region will give the explicit solutions for Ψi and ψi.
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i, but we omit this dependence in the notation to avoid clutter.

The following lemma describes the key properties of ui. All proofs are provided in the
Appendix.

Lemma 1. The following properties hold for any agent i and any threshold pair (g, G) with g <

G.

1. Dynamic consistency: For θ ∈ (g, G),
(a) ∂ui/∂G|(g,G; θ) > (=) 0 if and only if ∂ui/∂G|(g,G; θ=G) > (=) 0;
(b) ∂ui/∂g|(g,G; θ) > (=) 0 if and only if ∂ui/∂g|(g,G; θ=g) > (=) 0.

2. Single crossing:
(a) For G′ > G, ∂ui/∂G|(g,G′; θ=G′) ≥ 0 implies ∂ui/∂G|(g,G; θ=G) > 0;
(b) for g′ < g, ∂ui/∂g|(g,G; θ=g) ≥ 0 implies ∂ui/∂g|(g′,G; θ=g′) > 0.

3. Minimal deliberation: For small ε > 0, ui(vi − ε, vi + ε | vi) > evi /(1 + evi).

The partial derivative of ui with respect to either threshold reflects the trade-off be-
tween the cost of delay and the value of additional information. Part 1 of Lemma 1 says
that this trade-off is dynamically consistent. If an agent prefers changing a threshold
when he reaches it, then he will prefer the same change before reaching it. This means
that we can solve the optimal stopping of an agent without reference to his current be-
lief. Part 2 says that ui is single-peaked in a threshold when the other is hold constant.
Intuitively, the marginal waiting cost is constant but the value of additional information
decreases as the agent is more sure about the state. If an agent prefers waiting to tak-
ing α at θ, he certainly prefers waiting to taking α at a smaller θ′, where the case for α is
weaker and there is more to gain from waiting. Finally, at belief θ = vi agent i is indiffer-
ent between α and β. Part 3 of the lemma says that agent i prefers a small waiting region
symmetric about vi to immediate action. This follows from the assumption that θt follows
a continuous diffusion process.

In the classic individual optimal-stopping problem, an agent i chooses (gi, Gi) to max-
imize ui(g, G | θ). The group decision model differs in that the influence of each agent
on the final outcome is constrained by the cutoffs of other agents. Let IG(i; σ) and Ig(i; σ)

denote agent i’s “spans of control” for the upper and lower thresholds, respectively. For-
mally, we have:

IG(i; σ) ≡


[G[k](σ), G[k+1](σ)] if Gi < G[k](σ),

[G[k−1](σ), G[k+1](σ)] if Gi = G[k](σ),

[G[k−1](σ), G[k](σ)] if Gi > G[k](σ);

Ig(i; σ) ≡


[g[k](σ), g[k+1](σ)] if gi < g[k](σ),

[g[k−1](σ), g[k+1](σ)] if gi = g[k](σ),

[g[k−1](σ), g[k](σ)] if gi > g[k](σ).
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Figure 1 illustrates. Under majority rule, since neither agent 2 nor 3 votes for α when
θ < G2, α can never be adopted before G2; and since both agents 2 and 3 vote for α when
θ ≥ G3, α must be adopted by G3. As a result, agent 1 can only control at what beliefs
between G2 and G3 that α will be adopted. Therefore, IG(1; σ) = [G2, G3]. Similarly, agent
1 can only control at what beliefs between g2 and g3 that β will be adopted. Choosing
g1 < g2 effectively means β will be adopted by the group when the belief reaches g2.
Therefore, his span of control over the adoption of β does not extend beyond Ig(1; σ) =

[g2, g3].

Definition 1. Let (ĝ, Ĝ) ≡ (g[k](σ), G[k](σ)). A strategy profile σ is an equilibrium under
decision rule k if the following conditions are satisfied for any agent i:

1. For any belief θ and any (g′, G′) ∈ Ig(i; σ)× IG(i; σ), ui(ĝ, Ĝ | θ) ≥ ui(g′, G′ | θ) .

2. (a) Gi > (<) Ĝ if ∂ui/∂G|(ĝ,Ĝ; θ=Ĝ) > (<) 0;
(b) gi > (<) ĝ if ∂ui/∂g|(ĝ,Ĝ; θ=ĝ) > (<) 0.

3. (gi, Gi) 6= (vi, vi).

Condition 1 of Definition 1 is the standard Nash equilibrium requirement. Note that
when k 6= 2m− 1, for any pair of thresholds (g, G), it would be a Nash equilibrium in our
model for all agents to adopt the same strategy (g, G) because each agent’s span of control
for each alternative would be a singleton. To rule out this type of equilibria, we require
that each agent’s strategy be sensitive to his own preference at the margin. Condition 2
says that agent i does not vote for an alternative at the threshold if his marginal gain from
extending the threshold is positive, and, conversely, that he votes for an alternative before
the belief reaches the threshold for that alternative if his marginal gain from contracting
the threshold is positive. Finally, condition 3 requires that no agent i will immediately
vote for an alternative whenever he prefers that alternative to the other at his current be-
lief. By part 3 of Lemma 1 we know that voting for the preferred alternative immediately
is never optimal for an agent.9

3. Strategic Best Response in Stopping Decisions

It is useful to first study a one-sided stopping problem in which each agent takes one
of the thresholds as given and determines the optimal value of the other threshold. It
is straightforward to use Lemma 1 to establish that the solution to a one-sided stopping
problem is finite and unique. For any agent i, define φi(G) as the lower best-response
function for agent i which gives, for any fixed G, the optimal lower cutoff g that maxi-
mizes ui(g, G | θ) subject to g ≤ G. Similarly, the upper best-response function Φi(g) is
defined as the optimal upper cutoff G that maximizes ui(g, G | θ) subject to G ≥ g, given

9Without condition 3 it would be an equilibrium for all agent i to adopt (gi, Gi) = (vi, vi) when v1 =
. . . = v2m−1, even though the strategy is not optimal to any agent. Such a strategy does not violate condition
2 because (vi, vi) is a saddle point for individual agent i.
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φi
Φi

(vi,vi)

g

G

(gi
∗,Gi

∗)

g + G = 2vi

Figure 2. A typical pair of best-response functions

any fixed g.

Figure 2 depicts a typical pair of φi and Φi. The optimal thresholds for agent i in a
single-agent two-sided stopping problem are denoted by g∗i and G∗i . Obviously, if agent
i can choose both thresholds without constraint, the solution (g∗i , G∗i ) is characterized
by a fixed point of (φi, Φi).10 The center of the unconstrained optimal waiting region,
(G∗i + g∗i )/2, only depends on preference vi; while its width, G∗i − g∗i , only depends on
discount rate ri. Notice in Figure 2 that there is another fixed point (vi, vi), but it is not
optimal due to the minimal deliberation result of Lemma 1.

Since φi and Φi are symmetric across the line g + G = 2vi, we focus on the properties
of φi in the following discussion.11 An important feature of φi is that it coincides with
the 45-degree line when G ≤ vi. Recall that agent i prefers the immediate adoption of β

to the immediate adoption of α when the belief is lower than vi. If the upper threshold
for adopting α is set below vi, agent i would still prefer β to α when his belief reaches
the upper threshold. Hence, the optimal decision for agent i is to adopt β immediately.
So φi(G) = G. Note that this property is true for any ri no matter how small. Even an
extremely patient agent i will choose to adopt β immediately when G ≤ vi.

10The values of the optimal thresholds can be explicitly solved. In particular, we have G∗i = vi +
log(−R2/R1)/(R2 − R1) and g∗i = vi − log(−R2/R1)/(R2 − R1).

11Formal statements and proofs of these properties are provided in Lemma 2 in the Appendix.
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By contrast, when G > vi, even an extremely impatient agent i will prefer waiting to
adopting β immediately when his belief is above g but sufficiently close to it. The optimal
lower threshold in this case is characterized by first-order condition:

∂ui

∂g

∣∣∣∣
(φi(G),G; θ=φi(G))

= 0.

Note that φi(G) is continuous at vi in Figure 2. Suppose the upper boundary is fixed at a
level just above vi. Since the difference in expected payoff between α and β is very small
when the belief reaches this boundary, there is very little gain for agent i to wait for more
information before deciding to settle for alternative β. As a result, the best response is to
set the lower threshold at a level just below vi.

Another important feature of φi is that it is non-monotone for G ≥ vi. In Figure 2,
φi(G) decreasse as G increases from G = vi, reaches a minimum as G approaches G∗i , and
increase as G continue to increase past G∗i . This means that for all G ≥ vi, the one-sided
best response, φi(G), is greater than φi(G∗i ) = g∗i , the optimal lower threshold when agent
i controls both thresholds. Intuitively, G∗i is the optimal upper threshold for agent i. When
G < G∗i , α is chosen “too early.” When G > G∗i , it is chosen “too late.” In either case the
payoff from waiting for agent i would be lower than what it would be if G = G∗i . The
result that a loss of control (in this case, from controlling both boundaries to controlling
one boundary) may reduce the incentive to obtain information is discussed in Albrecht,
Anderson and Vroman (2010) in the context of a collective search model and by Strulovici
(2010) in a two-armed bandit experiment setting.

The non-monotonicity of φi and Φi implies there is a strategic difference between too
much waiting and too little waiting. Imagine that the two thresholds are controlled by
two different agents. If the agent who controls the upper threshold decides to wait too
long before accepting α (from the perspective of the agent who controls the upper thresh-
old), then the value of waiting falls and the agent who controls the lower threshold re-
sponds by adopting β earlier: excessive deliberation is self-limiting. But if the agent who
controls the upper threshold decides to wait too little before accepting α, the value of
waiting also falls and the other agent again cuts short his waiting before choosing β. In
this case, rushing to a decision can become self-reinforcing. This property raises the possi-
bility of multiple equilibria, in which expectations about other agents’ stopping decisions
can play an important role in the deliberation process.

Figure 3 illustrates how φi varies with ri. As agent i becomes more impatient, he raises
the lower threshold for the adoption of β. As this agent becomes extremely impatient, he
sets a lower threshold arbitrarily close to the upper threshold: the best-response function
is very close to the 45-degree line. Note that in this case φi(G) > vi if G is very high,
so that at the stopping point, β is actually worse than α for agent i. But since he cannot
influence the stopping decision for α, he would prefer to stop for the inferior alternative

12
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Figure 3. The best-response curve bends toward the 45-degree line as an agent becomes more impatient

than to bear the cost of deliberations.

4. Equilibrium Analysis

Given decision rule k, define the “pivotal” best-response functions:

Φpiv(g; k) ≡ min{θ | #{i|Φi(g) ≤ θ} ≥ k}, (6)

φpiv(G; k) ≡ max{θ | #{i|φi(G) ≥ θ} ≥ k}. (7)

These two functions are, respectively, the k-th smallest upper best-response for a given
g and the k-th largest lower best-response for a given G. In the following we sometimes
suppress the argument k when doing so does not cause confusion.

In Figure 4, panel (a), we plot the lower best-response functions of three agents, with
v1 < v2 < v3 and r1 > r2 = r3. If the upper boundary is fixed at G < G′, agent 2 wants
to stop to take alternative β before agent 3 but after agent 1. Hence, under majority rule,
φpiv(G) coincides with φ2(G). However because agent 1 is more impatient than the other
agents, his lower best-response function φ1 cuts φ2 and φ3. For G ∈ [G′, G′′), φ1(G) is
between φ2(G) and φ3(G). Hence φpiv(G) = φ1(G) in this range. For G ≥ G′′, the pivotal
lower best-response function coincides with φ3(G). In panel (b), the upper best-response
functions of the three agents do not intersect. Hence the pivotal best-response function
Φpiv(g) is simply the best-response function of agent 2.

Because agents’ preferences over a single threshold are single-peaked (part 2 of Lemma
1), it is a weakly dominant strategy for each agent to choose his best response in a one-
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Figure 4. Pivotal best-response functions and equilibrium

sided optimal-stopping problem where one of the thresholds is fixed. Thus, it is natu-
ral to expect that in a one-sided optimal-stopping problem the group decision would be
φpiv(G; k) (when the upper threshold is fixed at G) or Φpiv(g; k) (when the lower threshold
is fixed at g).

The analysis is more complicated when the agents are choosing both thresholds si-
multaneously, because there is no weakly dominant strategy in the two-sided problem.
Nevertheless, we can show that so long as the agents’ equilibrium behavior satisfies con-
dition 2 of Definition 1, the equilibrium outcome would be as if for each threshold each
agent is choosing a best response against the equilibrium value of the other threshold.

By the single-crossing property of Lemma 1, we can restate condition 2(a) of Defini-
tion 1 as requiring that, for each agent i, Gi > (<) Ĝ if Φi(ĝ) > (<) Ĝ. Suppose σ is
an equilibrium of the game. Any agent j with Φj(g[k](σ)) < G[k](σ) must adopt a up-
per threshold Gj < G[k](σ), while any agent j with Φj(g[k](σ)) > G[k](σ) must adopt a
upper threshold Gj > G[k](σ). It follows that any agent i with Gi = G[k](σ) must have
Φi(g[k](σ)) = G[k](σ). Furthermore, since G[k](σ) is the k-th smallest upper threshold
among all agents, the number of agent j with Φj(g[k](σ)) < G[k](σ) must be no greater
than k− 1, while the number of agents with Φj(g[k](σ)) > G[k](σ) must be no greater than
2m− k− 1. Hence, G[k](σ) = Φpiv(g[k](σ); k). By the same logic, g[k](σ) = φpiv(G[k](σ); k).
Thus, in any equilibrium the agent who “controls” a threshold (in the sense that he can
both speed up and delay the adoption of an alternative) must be choosing his one-sided
best response, and, furthermore, his one-sided best response must coincide with the piv-
otal best response as defined in (7).12

12Note that in general non-pivotal agents needs not choose their one-sided best responses and, hence,
may not stop in the same order as their best responses.
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Define

Σ̂(k) ≡
{
(ĝ, Ĝ) ∈ Σ | ĝ = φpiv(Ĝ; k), Ĝ = Φpiv(ĝ; k), ĝ < Ĝ

}
as the set of fixed points of (φpiv, Φpiv) such that the upper threshold is strictly higher
than the lower threshold. The argument in the last paragraph implies that an equilibrium
outcome must belong to Σ̂(k). The following proposition shows that the converse is also
true.

Proposition 1. For any majoritarian rule k ∈ {m, m + 1, . . . , 2m − 1}, an equilibrium of the
deliberation game exists. Furthermore, a strategy profile σ is an equilibrium under decision rule k
if and only if:

1. (g[k](σ), G[k](σ)) ≡ (ĝ, Ĝ) ∈ Σ̂(k).

2. For any agent i,
(a) Gi > (<) Ĝ if Φi(ĝ) > (<) Ĝ;
(b) gi > (<) ĝ if φi(Ĝ) > (<) ĝ.

3. For any agent i, (gi, Gi) 6= (vi, vi).

Conditions 2 and 3 of Proposition 1 are restatements of conditions 2 and 3 of Definition
1. To prove Proposition 1, we need to show that if σ satisfies conditions 1–3 of Proposition
1, then (g[k](σ), G[k](σ)) is a solution to the constrained optimization problem for each
agent i and for every θ:

max
g,G

ui(g, G | θ) subject to (g, G) ∈ Ig(i; σ)× IG(i; σ). (8)

The proof proceeds by first showing that (g[k](σ), G[k](σ)) satisfies the Kuhn-Tucker nec-
essary conditions for agent i’s constrained optimization problem (8). We then show that
any threshold pair that satisfies the Kuhn-Tucker necessary conditions must be a solution
to the constrained optimization problem. This step is not immediate because the objec-
tive function ui is not quasi-concave. Finally, equilibrium existence is proved through
Lemma 3 in the Appendix, which establishes that Σ̂(k) is non-empty. Panel (c) of Figure
4 illustrates that the equilibrium thresholds are given by the intersection of the pivotal
best-response functions.

Proposition 2. There exists a unique pair of equilibrium thresholds when all agents have the
same vi or the same ri. When agents differ in both vi and ri, multiple equilibrium outcomes may
exist. If (ĝ, Ĝ) and (ĝ′, Ĝ′) are both equilibrium waiting regions, then either (ĝ, Ĝ) ⊃ (ĝ′, Ĝ′)
or (ĝ′, Ĝ′) ⊃ (ĝ, Ĝ). Finally, under majority rule k = m, any equilibrium waiting region must
contain vm in its interior.

When all agents have the same vi or the same ri, their best-response functions do not
cross. If all ri’s are the same, Φpiv is equal to the upper best-response function of the agent
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Figure 5. Equilibria under different decision rules

with k-th smallest vi, while φpiv is equal to lower best-response function of the agent with
the k-th largest vi. If all vi’s are the same, Φpiv and φpiv are equal to the upper and lower
best-response functions of the agent with the k-th largest ri. In both cases, Σ̂(k) would be
a singleton.

Proposition 2 also says that there may be multiple equilibrium outcomes when agents
differ in both vi and ri. Figure 5 depicts a three-agent example with v1 < v2 < v3 and
r1 > r2 = r3. Note that φ1 cuts across φ2 and φ3. Because agent 1 is less patient than
agents 2 and 3, despite his weaker preference for alternative β he is willing to adopt β

at an earlier point than agents 2 and 3 are when G is large. Suppose the decision rule is
majority rule (i.e., k = 2). In panel (a), the pivotal lower best-response function, φpiv(·, 2),
is represented by the think line. It intersects Φpiv(·, 2) (which in this example is the same
as Φ2) four times. The three intersections other than (v2, v2), denoted by P1, P2, and P3 in
the figure, represent the equilibrium outcomes of this game under majority rule.

When the model exhibits multiple equilibria, Proposition 2 says that the equilibrium
waiting regions are nested and, in the case of majority rule, must contain vm. There is
thus a “most patient” equilibrium outcome and a “least patient” equilibrium outcome.
In panel (a) of Figure 5, P3 is the most patient and P1 is the least patient, and P1, P2, P3

all contain vm. Multiple equilibrium outcomes exist because the two stopping thresholds
are strategic complements up to a certain point. In general there is no natural way the
agents can coordinate on a particular equilibrium. Different agents may have different
preferences over different equilibria. More importantly, even the same agent may have

16



different preferences over two equilibria as belief changes. Hence, while a majority may
prefer one equilibrium outcome at some belief, another majority may prefer another one
at a different belief.

If the upper and lower thresholds are controlled by the same agent i in equilibrium of
this game, then the equilibrium thresholds are simply (g∗i , G∗i ). In general, however, the
upper and lower thresholds may be controlled by different agents in equilibrium. Let G∗(j)
denote the j-th largest value among {G∗1 , . . . , G∗2m−1}, and let g∗(j) denote the j-th smallest
value among {g∗1 , . . . , g∗2m−1}. The following proposition says that the equilibrium wait-
ing region under decision rule k is narrower than that implied by what would obtain if
each agent i acted naively by using g∗i and G∗i as their thresholds.

Proposition 3. If (ĝ, Ĝ) is an equilibrium under decision rule k, then ĝ ≥ g∗(k) and Ĝ ≤ G∗(k).

Intuitively, strategic interactions induce each agent to become “less picky,” in the sense
that he does not demand as much evidence before adopting an alternative when he loses
control of the adoption of the other alternative to other agents. Albrecht, Anderson and
Vroman (2010) obtain a similar result in the context of collective search.

Few general comparative statics results can be obtained for the equilibrium thresh-
olds ĝ and Ĝ. However, since G− φpiv(G) and Φpiv(g)− g are monotone, we can derive
comparative statics results for the equilibrium width of the waiting region. Let y(v, r, k)
and y(v, r, k) denote the widest and narrowest equilibrium width of the waiting region
under decision rule k when preferences are v = (v1, . . . , v2m−1) and discount rates are
r = (r1, . . . , r2m−1).

Proposition 4. Both y(v, r, k) and y(v, r, k) are decreasing in r and increasing in k.

Proposition 4 says that having a group of more impatient agents or a smaller majority
requirement shorten the deliberation process in the sense that the waiting regions of both
the most patient and least patient equilibrium will become narrower. It is important to
note that Proposition 4 does not apply to all equilibria. For example, in Figure 5, panel
(a), the waiting region of P2 will become wider when agent 3 becomes less patient. It is
straightforward to show that in general the waiting period of an equilibrium decreases
in r if and only if (dφpiv/dG)(dΦpiv/dg) < 1 (i.e., φpiv cross Φpiv from below) at the
equilibrium.

Lizzeri and Yariv (2011) show that when all agents have the same deliberation costs
and when preferences are symmetric (i.e., vj + v2m−j = 2vm), the lower threshold de-
creases in k while upper threshold increases in k in equilibrium. Our result that y and
y increases with the size of the required majority k does not place any restriction on the
profile of preferences and discount rates, but we cannot derive unambiguous results for
individual thresholds. Lizzeri and Yariv (2011) also show that in their symmetric environ-
ment, greater preference heterogeneity (i.e., a decrease in vj with a corresponding increase
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in v2m−j for j < m) leads to more deliberations. This result does not hold in general when
agents have heterogeneous discount rates.

5. Rushing to a Decision

In our model a change in preference or discount rate of one agent not only affects his
own voting decisions, but other members’ voting decisions as well through his influence
on their spans of control and on the determination of who “controls” the thresholds in
equilibrium. Unlike in Compte and Jehiel (2010) and Lizzeri and Yariv (2011), the de-
termination of the identity of the “key members” who controls the stopping decisions is
complex in our model because of two-dimensional heterogeneity in both preferences and
discount rates. In this section we show how strategic complementarity in the stopping
decision gives impatient agents a disproportionate influence on collective deliberation,
because the value of deliberation to the patient agents falls as impatient agents try to
adopt a decision quickly without waiting for much information. A striking result is that,
for a group of any size, the presence of merely one very impatient agent can cause the
whole group to rush to a decision under majority rule.

Figure 6 illustrates the effect on equilibrium deliberation as one of the agents becomes
extremely impatient. In panel (a), if r1 = r2 = r3, the best-response function φ1 of agent 1
lies to the left of φ2 and φ3. Under majority rule agent 1 is never pivotal, and equilibrium
is given by the intersection of φ2 and Φ2, i.e., point Pa. As r1 increases, the best-response
function φ1 bends toward the 45-degree line and cuts φ2. This means that agent 1 is will-
ing to adopt decision β before agent 2 does even though agent 1 has a lower preference for
β. In panel (b) of Figure 6, we see that agent 1 becomes pivotal in the sense that φpiv(G)

coincides with φ1(G) for some range of values of G. Equilibrium is given by the inter-
section of φ1 and Φ2. Note that agent 2 responds to agent 1 by stopping earlier to adopt
α, because he expects the impatient agent would stop early for decision β. The waiting
region corresponding to equilibrium Pb is narrower compared to that in equilibrium Pa

(Pb is closer to the 45-degree line than Pa is). As r1 increases further, φ1 cuts Φ2 at a point
closer and closer to the 45-degree line. Panel (c) shows that the equilibrium Pc gets closer
and closer to the point (v2, v2), which means that the waiting region becomes arbitrarily
short. The whole group rushes to a decision even though only one of its members is im-
patient. In this sense majority rule is not a robust decision-making mechanism because
the outcome can be dominated by the presence of just one very impatient agent.

The same result holds regardless of the size of the group and their preferences and
discount rates. This general result is mainly driven by two properties of the best-response
functions. First, for any agent j, Φj(g) = g for g ≥ vj and Φj(g) is continuous at g =

vj. Thus, for g slightly below vm, Φm(g) is below the upper thresholds of agents m + 1
through 2m − 1 and is above the upper thresholds of agents 1 through m − 1. In other
words, agent m is pivotal in the adoption of α. Second, as ri grows without bound, G −
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Figure 6. Effect on equilibrium deliberation as agent 1 becomes very impatient

φi(G) shrinks to 0 for any G > vi. See Figure 3 above; the formal statement is given in
Lemma 2 in the Appendix. Suppose, for example, that i < m. As ri becomes very large,
the curve φi cuts φj near the 45-degree line for all j > i. Thus, for G slightly above vm,
φi(G) is to the right of φm(G), meaning that, despite his lower preference for β, agent i
is prepared to adopt β before agent m does. In this way agent i becomes pivotal in the
adoption of β. Equilibrium is given by the intersection of Φm and φi. In this equilibrium
the waiting region is very narrow and is centered near vm. Agent i is prepared to wait
very little because he is extremely impatient. Agent m also waits very little because the
value of information is low as he is almost indifferent between the two alternatives inside
the waiting region.

Proposition 5. Let v1 < . . . < v2m−1 and the decision rule be majority rule (k = m). For any
ε > 0, there exists r(ε) such that if ri ≥ r(ε) for some i, then there is an equilibrium (ĝ, Ĝ) that
is contained in the interval [vm − ε, vm + ε].

The collapse of deliberations described in Proposition 5 is a stark manifestation of the
potential influence that a few impatient agents can bring to the collective decision-making
process. One way to understand this to is think about these impatient agents as “swing
voters.” An impatient agent may be biased in favor of α, but because of discounting he
is willing to settle for β as long as the evidence (i.e., the value of S′t) swings a bit in fa-
vor of β. His vote can easily switch between adopting α and adopting β depending on
small random changes in the information arrival process. As a result, swing voters are
easy targets of alliance if members in the rest of the group want to adopt one of the two
alternatives. To avoid some members of the group from capturing these swing voters to
adopt one alternative, members who are biased for the other alternative will cut short the
deliberative process by pushing forward the stopping threshold for their favored alterna-
tive as well. The effects of such behavior are magnified in equilibrium through strategic
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complementarity.

We may call the type of equilibrium in Proposition 5 a hasty equilibrium, because, start-
ing at any initial belief θ0 ∈ (ĝ, Ĝ), the time it takes for the belief θt = θ0 + S′t to reach the
boundaries of the waiting region is short as ε can be very small. In this equilibrium, which
of the two alternatives will be chosen essentially depends only on whether the initial be-
lief θ0 is greater or less than the preference vm of agent m. Even if θ0 happens to lie within
the waiting region (ĝ, Ĝ), the probability of adopting the two alternatives is still largely
independent of the true state. To see this, note from equation (1) that Pr[θT = Ĝ | θ0; A] is
equal to Ψi(ĝ, Ĝ | θ0) evaluated at ri = 0. From (3) and (5), we obtain:

Pr[θT = Ĝ | θ0; A] =
eĜ − eĜ+ĝ−θ0

eĜ − eĝ
.

Similarly,

Pr[θT = Ĝ | θ0; B] =
eθ0 − eĝ

eĜ − eĝ
.

Because the exponential function is convex, the probability of reaching decision α is higher
in state A than in state B when θ0 ∈ (ĝ, Ĝ). However, as Ĝ− ĝ shrinks to 0 while keeping
(θ0 − ĝ)/(Ĝ− ĝ) fixed along the sequence, we have

lim
Ĝ−ĝ→0

Pr[θT = Ĝ | θ0; A] = lim
Ĝ−ĝ→0

Pr[θT = Ĝ | θ0; B] =
θ0 − ĝ
Ĝ− ĝ

.

In other words, whether the true state is A or B has little effect on the probability of
choosing α. In a hasty equilibrium, potential evidence about the state contained in the
process S′t plays almost no role in informing the group’s decision.

It should be emphasized that the impacts of very impatient agents and very patient
agents are not symmetric. While the presence of merely one extremely impatient agent
can lead to a rush to making decisions under majority rule, the presence of a few ex-
tremely patient agent generally will not produce an equilibrium with never-ending delib-
erations. Intuitively, different group members compete for the support of very impatient
agents to obtain their favored alternatives, resulting in a pre-mature stopping of delib-
erations which is magnified through strategic complementarity. However, it is difficult
to court the support of very patient agents because they prefer to stop deliberating only
when the evidence is unequivocal. Thus very patient agents are seldom pivotal in group
decision-making. Moreover the non-monotonicity of the best-response functions means
that the stopping decisions exhibit strategic substitutability when there is excessive wait-
ing. Thus the presence of very patient agents will cause other agents to stop deliberating
earlier, putting an upper bound on the equilibrium width of the waiting region (unless
very patient agents comprise more than half of the group).
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Figure 7. Effect on equilibrium deliberation as agent 2 becomes very patient

Proposition 6. Let v1 < . . . < v2m−1 and the decision rule be majority rule (k = m). For any
ζ > 0, there exist r(ζ) such that if #{i | ri < r(ζ)} ≤ m− 1, then there is no equilibrium (ĝ, Ĝ)

such that Ĝ− ĝ > ζ.

We can illustrate Proposition 6 with Figure 7. In panel (a), r1 = r2 = r3. Agent 2 is
pivotal for the adoption of both alternatives, and the equilibrium is indicated by Pa. As
agent 2 becomes more patient, his upper best-response curve Φ2 becomes more vertical
while his lower best-response curve φ2 becomes more horizontal. For low enough r2,
Φ3 eventually cuts Φ2, and φ1 eventually overtakes φ2. In panel (b), the equilibrium
under majority rule is given by the intersection of Φ3 and φ1 (i.e., point Pb). Since agent
2 ceases to be pivotal, the equilibrium waiting region would not become any wider even
if r2 keeps decreasing to 0. A very patient agent demands very strong evidence before
stopping to make a decision. It is difficult for other group members to court his vote in
support of adopting the alternatives. Thus a very patient agent is unlikely to be pivotal,
and his presence in the group does not trigger a cumulative response through strategic
complementarity as an impatient agent does.

6. Super-majority Rule as an Obstacle to Hasty Measures

To avoid making hasty decisions, a majority of agents may choose to adopt a super-
majority rule at the beginning of the deliberation process. From Proposition 4, the width
of the waiting region in the most patient equilibrium and in the least patient equilibrium
are increasing in the size of the majority requirement k. It is not surprising that people
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Figure 8. Increasing the super-majority requirement removes the hasty equilibrium

generally deliberate longer when they adopt a decision rule with a greater super-majority
requirement. More interestingly, a super-majority rule is more robust to the possibility
that the presence of a few extremely impatient agents may cause the whole group to rush
to a decision under majority rule.

We illustrate this point with Figure 8. The parameters used in this figure are repro-
duced from those in panel (c) of Figure 6. We re-interpret “agent 1” as a small group of n
swing voters whose discount rate r1 is very high. “Agent 2” and “agent 3” are interpreted
as two large “factions” in the group, each of size (2m− n− 1)/2. We assume that these
two factions are large in the sense that a coalition between them will be decisive under
rule k, i.e., 2m− n− 1 ≥ k.

Suppose k > n + (2m− n− 1)/2; that is, n ≤ 2(k−m). Then “agent 1” (the impatient
swing voters) and “agent 3” (the faction with a high preference for β) together are still
not sufficient to stop deliberations to adopt β without the consent of “agent 2.” Thus the
pivotal best-response function is φpiv = φ2. Likewise, the group has to secure the consent
of “agent 3” for the adoption of α, which means Φpiv = Φ3. The equilibrium as shown
in Figure 8 is not a hasty equilibrium. In other words a suitably designed super-majority
rule k > m can avoid the collapse of deliberations triggered by very impatient agents,
unless the number of these very impatient agents exceeds 2(k−m). This conclusion can
be generalized beyond the example shown in Figure 8. For any profile of preferences and
discount rates, we have the following result.
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Proposition 7. Let v1 < . . . < v2m−1. For any ε > 0, there exists r̃(ε) such that if

#{i | ri ≥ r̃(ε)} ≤ 2(k−m), (9)

then any equilibrium (ĝ, Ĝ) under decision rule k must have Ĝ− ĝ ≥ ε.

Note that majority rule k = m is special in the sense that the mere presence of one
very impatient agent violates condition (9). Proposition 7 implies that increasing the size
of the supermajority by one will allow the number of very impatient agents to increase
by two without causing deliberations to collapse to a hasty equilibrium. In fact, as long
as extremely impatient agents comprise less that half of the group, Proposition 7 implies
that a three-quarters super-majority requirement (k ≥ m + (m− 1)/2) is sufficient to rule
out a hasty equilibrium.

However raising the super-majority requirement may also create a risk that some very
patient agents could drag the whole group into protracted deliberations. In the Appendix,
we prove a generalized version of Proposition 6 for any decision rule k. This general-
ized proposition states that as long as the number of very patient agents does not exceed
2m− k− 1, there is an upper bound on the width of the equilibrium waiting region un-
der decision rule k. Note that the maximum number of very patient agents that can be
allowed without causing endless deliberations falls by one (instead of two) as the super-
majority requirement is increased by one. For example, suppose that the number of very
impatient agents and the number of very patient agents are both equal to (m− 1)/2, and
the remaining agents with non-extreme discount rates are in majority. Then Proposition 7
and the generalized version of Proposition 6 imply that a decision rule with between 5/8
and 3/4 super-majority requirement can rule out a hasty equilibrium without creating
the risk of protracted deliberations.

A hasty equilibrium with an almost complete collapse of deliberations is an extreme
manifestation of the strategic problem created by the competition for the support of im-
patient voters. Even when competition takes a less extreme form, strategic complemen-
tarity in the stopping decision can cause decisions to be made too quickly. We illustrate
this point using the multiple equilibria example of Figure 5 discussed earlier.

In Figure 5, equilibrium P1 corresponds to a hasty equilibrium if r1 is very high. Two
other equilibria, P2 and P3, exist. In these two equilibria competition for the support of
the impatient agent 1 to form a majority causes the remaining patient agents to rush to
a decision because they expect other patient agents to rush to their favored alternative.
Even though agent 1 “controls” neither threshold in equilibrium P2 or P3, it is clear from
the figure that the waiting region at either equilibrium is narrower than the width of the
unconstrained optimal waiting region if member j 6= 1 were to make the decision alone
(the latter is indicated by, say, the intersection between Φ3 and φ3 in Figure 5). Note also
that the premature termination of deliberations in equilibrium P2 or P3 does not rely on
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agent 1 being extremely impatient. A moderately high r1 is sufficient to produce this type
of equilibria.

Suppose the decision rule in this example is changed to requiring super-majority, i.e.,
k > m. Then adopting either alternative would require the support of both agent 2 and
agent 3. The relevant pivotal functions become φ2 and Φ3, with a unique equilibrium
at point Ps, as shown in panel (b) of Figure 5. While equilibria P1, P2, and P3 under
majority rule induce too little deliberation relative to the unconstrained optimum (for
group members other than agent 1), equilibrium Ps under super-majority rule induces
too much deliberation. The choice between majority rule and super-majority rule in this
example therefore boils down to comparing which of these inefficiencies is larger. Because
individuals have different preferences and discount rates, a general welfare comparison
of the voting rules does not yield any particular insights. In this paper our main focus is
the disproportionate influence of a very small number of impatient agents on equilibrium
deliberation. Therefore we will disregard the welfare of agent 1 and consider only the
equilibrium payoffs to agents 2 and 3. If we interpret “agent 1” as impatient swing voters,
we are in effect assuming that these voters are the minority and restricting our attention
to the welfare of the remaining mainstream voters.

Proposition 8. There is an interval containing (v2 + v3)/2 such that if the initial belief θ0

belongs to that interval, then every agent (except agent 1) prefers equilibrium Ps under super-
majority rule to equilibria P1, P2, and P3 under majority rule. Furthermore there is no initial
belief such that every agent (except agent 1) prefers majority rule to super-majority rule.

The welfare comparison of equilibrium outcomes depends on the initial belief. It is
clear that Ps cannot be preferred to, say, P3 by all agents at any belief. For example, when
the belief is near the upper boundary of the waiting region (ĝs, Ĝs) under Ps, agent 2
prefers adopting α immediately (which is the outcome in equilibrium P3 under majority
rule) to waiting. Similarly, when the belief is near the lower boundary ĝs, agent 3 prefers
adopting β immediately to waiting. Nevertheless, Proposition 8 establishes that there is a
range of beliefs near the center of the waiting region (ĝs, Ĝs) for which both agent 2 and
agent 3 prefer super-majority rule to any equilibrium under majority rule.

The crucial step in establishing Proposition 8 is the following comparison:

0 < (Ĝs − ĝs)− y∗ < y∗ − (Ĝ3 − ĝ3), (10)

where y∗ = G∗j − g∗j is the width of the unconstrained optimal waiting region for agent
j = 2, 3. This result (proved in the Appendix) says that while super-majority rule pro-
duces too much deliberation (relative to the unconstrained optimal level y∗) and majority
rule produces too little deliberation, the degree of distortion is relatively smaller under
super-majority rule. At Ps, both Φpiv and φpiv are upward sloping (see panel (b) of Figure
5), meaning that the stopping decisions at the upper and lower boundaries are strategic
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substitutes: agent 2 compensates for a G above G∗2 by choosing a g above g∗2 and agent
3 compensates for a g below g∗3 by choosing a G below G∗3 . This is the “moderation ef-
fect” identified by Lizzeri and Yariv (2011). Hence the excessive deliberation induced by
super-majority rule is self-limiting. At equilibrium P3, however, the pivotal best-response
functions are downward sloping. A lower G chosen by agent 2 induces agent 3 to react
by choosing a higher g, which in turn prompts agent 2 to choose a still lower G. The
distortions are magnified by strategic complementarity. This can be called a “radicaliza-
tion effect,” and is the result of the competitive courting of the impatient swing voters’
support under majority rule.

We can illustrate these results with a numerical example. In Figure 9, we set v2 = −0.3,
v3 = 0.3, and choose r and µ′ such that R1 = −0.2 and R2 = 1.2. The waiting region corre-
sponding to equilibrium Ps under super-majority rule is (−1.55, 1.55), while the waiting
region in equilibrium P3 under majority rule is (−0.88, 0.88). For r1 sufficiently high,
equilibrium P1 is a hasty equilibrium with thresholds (vA − ε, vA + ε). Panel (a) plots the
utility of agent 2, and panel (b) plots the utility of agent 3. We see that utility at equi-
librium P3 is always above utility at the hasty equilibrium P1. Figure 9 illustrates the
point that welfare comparison of equilibrium outcomes depends on the initial belief. For
example, agent 2 prefers equilibrium Ps to P3 when the belief is low, but his preference
switches when the belief is high. Agent 3 exhibits the opposite kind of preference reversal.
Nevertheless, for θ0 ∈ [−0.24, 0.24], utility at equilibrium Ps under super-majority rule is
higher than utility at equilibrium P3 under majority rule for both agents 2 and 3. More-
over, although Ps does not dominate P3 for all beliefs, the range of beliefs for which agent
2 prefers P3 to Ps does not overlap with the range of beliefs for which agent 3 prefers P3

to Ps. In other words, there is no initial belief for which both agents prefer majority rule
to super-majority rule.

7. Heterogeneity in One Dimension

We emphasize that the potential problems of majority rule that we describe are the result
of heterogeneity in two dimensions: preferences and discount rates. Diverging prefer-
ences induce agents to court those with relatively high discount rates to support their fa-
vored alternatives, inducing agents with opposing preferences to react strategically that
culminates in a short-circuiting of the deliberation process. If agents differ only in the
preference dimension or only in the impatience dimension, however, majority rule can be
more appealing than super-majority rule in our model.

Consider first the case where v1 ≤ . . . ≤ v2m−1 and r1 = . . . = r2m−1 = r. Since
best-response functions are ordered by preferences, the pivotal voter for α is agent k and
the pivotal voter for β is agent 2m− k under decision rule k. Under majority rule, agent
m is pivotal for both alternatives, and the equilibrium thresholds are the same as his un-
constrained optimal thresholds. Note also that the unconstrained optimal width of the
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Figure 9. Comparing utility for different agents in different equilibria

waiting region y∗m for agent m does not depend on vm, so the equilibrium width y∗m is
equal to y∗i for every agent i. Of course, the center of the equilibrium waiting region is vm,
which may not be ideal for other agents. Under super-majority rule k > m, equilibrium
is determined by the intersection of the best-response functions Φk and φ2m−k. The equi-
librium width of the waiting region ŷ is greater than y∗m. We can establish the following
result.

Proposition 9. Suppose r1 = . . . = r2m−1. For any initial belief θ0, at least a majority of
agents prefer majority rule to super-majority rule. Furthermore, there exists an interval of belief
containing vm such that, if θ0 belongs to that interval, then all agents prefer majority rule to
super-majority rule.

Next consider the case v1 = . . . = v2m−1 = v. Without loss of generality, assume
that r1 ≥ . . . ≥ r2m−1. Since the best-response functions are ordered by discount rates,
the pivotal best-response functions are Φk and φk under decision rule k. In other words,
agent k is fully decisive, and the equilibrium waiting region is given by (g∗k , G∗k ). A higher
majority requirement causes an agent with a lower discount rate to become the decisive
voter, so that the equilibrium waiting region expands. The following result again confirms
that majority rule is desirable if there is heterogeneity in one dimension only.

Proposition 10. Suppose v1 = . . . = v2m−1. For any initial belief θ0, at least a majority of
agents (agents 1 to m) prefer majority rule to super-majority rule.
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8. Concluding Remarks

In this paper we provide a framework to study collective decision-making that takes times
because of the need to accumulate evidence. We find that under majority rule impatient
agents have a disproportionate influence on the decision-making process. The presence
of merely one very impatient agent can cause the whole group to arrive at a decision with
virtually no deliberation. In some cases, this hasty equilibrium is the unique equilibrium.
But, as we have shown in Section 6, even when the hasty equilibrium is not unique,
the presence of impatient agents may still trigger competition for their votes so that the
amount of deliberation is reduced in all equilibria. As a result, a majority of agents may
choose to adopt a super-majority rule to avoid hasty decisions.

While our setup uses discounting to model the cost of deliberation, a very similar
model can be constructed with explicit deliberation costs, as in Wald’s (1947) original
formulation and in Lizzeri and Yariv (2011). Suppose, for agent i, the cost of information
collection or deliberation is δdt for a time interval of length dt, and the payoffs from α

and β are λi and λievi , respectively. Agents with low values of λi have a relatively high
cost of information collection. These low-stake agents do not care that much about which
alternative is taken; their primary concern is to reduce the explicit information collection
cost. In such an alternative setup, low-stake agents play a similar role as impatient agents
in our model. If there is heterogeneity in both vi and λi, competition for the votes of the
low-stake agents can produce hasty decisions for the group under majority rule.

We assume that time is continuous so that an agent can change his vote anytime he
wants. Modelling the deliberation process in discrete time would be tantamount to forc-
ing the agents to wait a finite amount of time and observe a finite amount of information
before they can vote again. This constraint will prevent an extremely impatient agent
from swtiching his vote upon receiving an abiritraily small amount of information. We
have not tried to solve out a discrete-time version of our model. We hypothesize that
in such a model impatient agents would still tend to be disproportionately influential
under majority rule for the reasons we have described, even though deliberation may
not collapse almost entirely in the presence of one extremely impatient agent due to the
minimum-waiting constraint. We expect that as the time period shrinks, this constraint
will become unimportant, and the equlibrium outcome will converge to the continuous-
time model.

While we argue that super-majority rule can be a shield against hasty decisions, we
do not want to claim that it always dominates majority rule—Propositions 9 and 10 show
that it is inferior when there is one-dimensional heterogeneity only. In a general environ-
ment with two-dimensional heterogeneity, it is difficult to say anything specific about the
“optimal” decision rule even if we can agree on the appropriate social welfare function.
What we have done in this paper instead is to identify a general tendency for impatient or
low-stake agents to have a disproportionate impact on group deliberations, and suggest

27



how super-majority rule is useful in guarding against such a tendency. While we have
focused on the welfare of the decision makers, in many cases the decision also affects the
welfare of people outside the decision-making group, who do not fully bear the deliber-
ation cost. The deliberation cost for a jury, for example, is often insignificant compared
to the effect of the verdict on the parties related to the case. In such cases, the robustness
property may turn out to be more important than having rules which are “optimal” in a
limited set of environments.
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Appendix

A. Additional Lemmas

Lemma 2. For each agent i, the best-response functions are given by:

Φi(g) =


{

G | ∂ui/∂G|(g,G; θ=G) = 0
}

if g < vi,

g if g ≥ vi;

φi(G) =


{

g | ∂ui/∂g|(g,G; θ=g) = 0
}

if G > vi,

G if G ≤ vi.

The following properties hold for all i:

1. Unconstrained optimum: The unconstrained optimal thresholds (g∗i , G∗i ) is the unique fixed
point of (φi, Φi) such that (g∗i , G∗i ) 6= (vi, vi). The optimal thresholds are symmetric, with
g∗i + G∗i = 2vi; and the optimal width G∗i − g∗i depends only on ri.

2. Differentiability: (a) Φi(g) is continuous everywhere and differentiable when g 6= vi; (b)
φi(G) is continuous everywhere and differentiable when G 6= vi.

3. Waiting region: (a) Φi(g)− g is positive, strictly decreasing, and strictly concave for g <

vi; (b) G− φi(G) is positive, strictly increasing and strictly concave for G > vi.

4. Non-monotonicity: (a) Φi(g) is increasing for g < g∗i , and decreasing for g ∈ [g∗i , vi); (b)
φi(G) is decreasing for G ∈ (vi, G∗i ], and increasing for G > G∗i .

5. Comparative Statics: (a) For any g, Φi(g) is increasing in vi and decreasing in ri; (b) for
any G, φi(G) is increasing in vi and increasing in ri.

6. Effect of impatience: (a) For any g0 < vi and ε > 0, there exists ri such that Φi(g)− g ≤ ε

for any g ∈ (g0, vi) if ri ≥ ri; (b) for any G0 > vi, ε > 0, there exists ri such that
G− φi(G) ≤ ε for any G ∈ (vi, G0) if ri ≥ ri.

Lemma 3. For any majoritarian decision rule k ∈ {m, . . . , 2m− 1}, the set Σ̂(k) is non-empty.

Lemma 4. For any agent i and any pair of thresholds (g, G) and (g′, G′) such that θ ∈ [g′, G′] ⊂
[g, G],

ui(g, G | θ)− ui(g′, G′ | θ)

{
> 0 if Φi(g) ≥ G and φi(G) ≤ g;

< 0 if Φi(g) ≤ G′ and φi(G) ≥ g′.
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B. Proofs

Proof of Lemma 1. Part 1. From the formulas for Ψi and ψi in (3) and (4), we have:

∂Ψi

∂G
=
−
(

R2e−R2(G−g) − R1e−R1(G−g)
)

Ψi

e−R1(G−g) − e−R2(G−g)
;

∂ψi

∂G
=

(R2 − R1) e−(G−θ)Ψi

e−R1(G−g) − e−R2(G−g)
.

Therefore,

∂ui

∂G
=

(R2 − R1) e−(G−g)eθΨi

(1 + eθ)
(
e−R1(G−g) − e−R2(G−g)

) (evi−g − e f (ri,G−g)
)

,

where

f (ri, G− g) = log
R2eR1(G−g) − R1eR2(G−g)

R2 − R1
.

For θ > g, the first term is positive. Therefore, the sign of ∂ui/∂G depends only on the
sign of vi − g− f (ri, G− g) and not on the value of θ. Similarly,

∂ui

∂g
=

(R2 − R1) e−(G−g)evi ψi

(1 + eθ)
(
e−R1(G−g) − e−R2(G−g)

) (e f (ri,G−g) − eG−vi
)

.

For θ < G, the first term is positive. Therefore, the sign of ∂ui/∂g depends only on the
sign of f (ri, G− g)− G + vi and not on the value of θ.

Part 2. From the proof of part 1, ∂ui/∂G|(g,G; θ=G) has the same sign as vi − g −
f (ri, G − g), which is strictly decreasing in G. Similarly, ∂ui/∂g|(g,G; θ=g) has the same
sign as f (ri, G− g)− G + vi, which is strictly decreasing in g.

Part 3. From the proof of part 1, ∂ui/∂G|(vi−ε,vi+ε; θ=vi)
has the same sign as ε −

f (ri, 2ε). Since this expression is equal to 0 and its derivative is equal to 1 at ε = 0,
we have ∂ui/∂G|(vi−ε,vi+ε; θ=vi)

> 0 for small ε > 0. It follows that

ui(vi − ε, vi + ε | vi) > ui(vi − ε, vi | vi) = evi /(1 + evi).

Proof of Lemma 2. From the proof of Lemma 1, we know that the sign of ∂ui/∂G de-
pends only on the sign of vi − g− f (ri, G− g) when θ ∈ [g, G]. As f (ri, G− g) > 0 when
G > g, vi − g− f (ri, G− g) ≤ 0 for any g ≥ vi. This shows that Φi(g) = g when g ≥ vi.
Suppose now g < vi. As f (ri, 0) = 0, ∂ui/∂G > 0 at G = g. As limG→∞ f (ri, G− g) = ∞,
∂ui/∂G < 0 when G is sufficiently large. It follows that there must exist some G′ > g
such that ∂ui/∂G = 0 at G = G′. By Lemma 1, G′ must maximize ui(g, G | θ) with respect
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to G, subject to the constraint that G ≥ g for all θ ∈ (g, Φi(g)]. Finally, for all θ > Φi(g),
ui(g, Φi(g) | θ) = eθ/(1 + eθ) ≥ ui(g, G | θ) for all G ≥ g. The argument for φi(G) is
analogous.

Part 1. For g < vi < G the first-order conditions for the optimal thresholds character-
ize the best-response functions:

vi − g− f (ri, Φi(g)− g) = 0,

f (ri, G− φi(G))− G + vi = 0,

where f (ri, y) = log
(
(R2eR1y − R1eR2y)/(R2 − R1)

)
. Adding these two equations shows

that Φi and φi are symmetric in the sense that Φi(g) + φi(G) = 2vi for g + G = 2vi. By
the minimal deliberation result of Lemma 1, we know that for small ε > 0,

Φi(vi − ε) ≥ vi + ε and φi(vi + ε) ≤ vi − ε.

Furthermore, from the first-order conditions, we know that for large η,

Φi(vi − η) < vi and φi(vi + η) > vi.

It then follows from the symmetry of φi and Φi that (φi, Φi) must have a fixed point that
is not (vi, vi) on the line g + G = 2vi. Part 3 of this Lemma establishes that both Φi(g)− g
and G− φi(G) are increasing and concave. Hence (φi, Φi) has only one fixed point with
G∗i > g∗i . Finally, notice that the first-order conditions imply

−(G∗i − g∗i ) + 2 f (ri, G∗i − g∗i ) = 0.

Thus, G∗i − g∗i depends only on ri but not on vi.

For the remaining parts of this Lemma, we only establish the statements for the upper
best-response function; the proof for the corresponding part (b) is omitted.

Part 2. The continuity of Φi follow from the first-order condition and the fact that
f (ri, 0) = 0; it is differentiable as f is differentiable.

Part 3. Denote Φi(g)− g by y. For g < vi, differentiate the first-order condition that
defines the upper threshold with respect to g to get

1 +
∂ f
∂y

(
dΦi

dg
− 1
)
= 0,

∂2 f
∂y2

(
dΦi

dg
− 1
)2

+
∂ f
∂y

d2Φi

dg2 = 0.
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For y > 0, since

∂ f
∂y

= −R1R2
eR2y − eR1y

R2eR1y − R1eR2y > 0,

∂2 f
∂y2 = − R1R2(R2 − R1)

2ey

(R2eR1y − R1eR2y)2 > 0,

we have dΦi/dg < 1 and d2Φi/dg2 < 0.

Part 4. The one-sided stopping problem satisfies a smooth pasting condition at the
optimal threshold (see, for example, Dixit 1993). For any g < vi we have:

∂ui

∂θ

∣∣∣∣
(g,Φi(g); θ=Φi(g))

=
d(eθ/(1 + eθ))

dθ

∣∣∣∣
θ=Φi(g)

.

Differentiate both sides with respect to g to yield:(
d2(eθ/(1 + eθ))

dθ2 − ∂2ui

∂θ∂G
− ∂2ui

∂θ2

)∣∣∣∣
(g,Φi(g); θ=Φi(g))

dΦi(g)
dg

=
∂2ui

∂θ∂g

∣∣∣∣
(g,Φi(g); θ=Φi(g))

.

Recall from part 1 of Lemma 1 that the sign of ∂ui/∂g depends on the sign of f (ri, G −
g)− G + vi and not on θ. In particular, ∂ui/∂g = wi(g, G; θ)(e f (ri,G−g) − eG−vi) for some
positive function wi. At g = g∗i , we have Φi(g∗i ) = G∗i and f (ri, G∗i − g∗i )− G∗i + vi = 0,
Thus,

∂2ui

∂θ∂g

∣∣∣∣
(g∗i ,Φi(g∗i ); θ=Φi(g∗i ))

=
(

e f (ri,G∗i −g∗i ) − eG∗i −vi
) ∂wi

∂θ

∣∣∣∣
(g∗i ,G∗i ; θ=G∗i )

= 0.

Thus, dΦi(g∗i )/dg = 0. Since Φi is strictly concave by part 3 of this lemma, Φi strictly
increases in g when g < g∗i and strictly decreases in g when g > g∗i .

Part 5. For g ≤ vi, Φi(g) satisfies −g + f (ri, Φi(g) − g) − vi = 0. Since f (ri, y) is
increasing in y, Φi(g) is increasing in vi. For g > vi, a marginal increase in vi has no effect
on Φi(g), while raising vi to v′i > g will bring Φi(g) from g to a number strictly greater
than g. For comparative statics with respect to ri, we note from (5) that ∂R2/∂ri > 0 and
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∂R1/∂ri = −∂R2/∂ri. Therefore ∂ f /∂ri has the same sign as:

(eR1y − R2yeR1y + eR2y − R1yeR2y)(R2 − R1)− 2(R2eR1y − R1eR2y)

= (1− (R2 − R1)R1y)eR2y − (1 + (R2 − R1)R2y)eR1y

= (1− (R2 − R1)R1y)eR1y
(

e(R2−R1)y − 1 + (R2 − R1)R2y
1− (R2 − R1)R1y

)
> (1− (R2 − R1)R1y)eR1y

(
1 + (R2 − R1)y−

1 + (R2 − R1)R2y
1− (R2 − R1)R1y

)
= − R1(R2 − R1)

2y2eR1y > 0.

Since f (ri, y) increases in both ri and y, Φi(g) is decreasing in ri for g ≤ vi. For g > vi,
Φi(g) = g is weakly decreasing in ri.

Part 6. We know that f (ri, y) increases in y and f (ri, 0) = 0. By L’Hopital’s rule,

lim
ri→∞

f (ri, y) = lim
ri→∞

(
1 +

ri

µ′

)(
eR1y + eR2y

)
= ∞.

We can choose ri such that
vi − g0 − f (ri, ε) = 0.

Since f (ri, y) increases in ri, for any ri ≥ ri and g ∈ (g0, vi), we must have Φi(g)− g ≤
ε.

Proof of Lemma 3. For any y > 0, let γi(y) be the value of g that solves Φi(g)− g = y,
where i ∈ {1, . . . , 2m − 1} or i = piv. Similarly, let Γi(y) be the value of G that solves
G − φi(G) = y. From the proof of Lemma 2, for Φi(g)− g > 0 it must satisfy vi − g −
f (ri, Φi(g)− g) = 0 for i ∈ {1, . . . , 2m − 1}. Thus, for y > 0, the value of g that solves
Φi(g)− g = y is given by

γi(y) = vi − f (ri, y).

Similarly, for y > 0, the value of G that solves G− φi(G) = y is

Γi(y) = vi + f (ri, y).

Part 3 of Lemma 2 implies that γi is strictly decreasing for each agent i. Hence γpiv is also
strictly decreasing. Similarly, Γi is strictly increasing for i ∈ {1, . . . , 2m− 1} or i = piv.

Suppose there exists ŷ > 0 such that

Γpiv(ŷ)− γpiv(ŷ) = ŷ.

Then, from the definition of γpiv, this equation implies Γpiv(ŷ) = Φpiv(γpiv(ŷ)). Further,
using the definition of Γpiv, we can also obtain γpiv(ŷ) = φpiv(Γpiv(ŷ)). In other words,
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(γpiv(ŷ), Γpiv(ŷ)) is a fixed point of (φpiv, Φpiv). Moreover, since ŷ > 0, Γpiv(ŷ) > γpiv(ŷ).
Therefore (γpiv(ŷ), Γpiv(ŷ)) belongs to Σ̂(k). We show the existence of ŷ through two steps
and the use of the intermediate value theorem.

Step 1. When y is sufficiently close to 0, Γpiv(y)− γpiv(y) < y.

Since limy→0 Γpiv(y) = v2m−k and limy→0 γpiv(y) = vk, it follows from continuity of
Γpiv and γpiv that the claim is true for y sufficiently close to 0 if vk > v2m−k. Now, suppose
vk = v2m−k. By continuity, there exists some agent j with vj = vk such that γpiv(y) = γj(y)
for y sufficiently close to 0. Similarly, there is some agent j′ with vj′ = v2m−k such that
Γpiv(y) = Γj′(y) for y sufficiently close to 0. Therefore, for such y,

Γpiv(y)− γpiv(y) = vj′ − vj + f (rj′ , y) + f (rj, y).

Since vj = vj′ and ∂ f /∂r > 0, we have

Γpiv(y)− γpiv(y) ≤ 2 f
(

max{rj, rj′}, y
)

.

Let y1 be the positive solution to the equation−y+ 2 f (r, y) = 0 when r = max{rj, rj′}. We
note that −y + 2 f (r, y) is strictly convex and is equal to 0 at y = 0 and y = y1. Therefore
2 f (r, y) < y for all y ∈ (0, y1), which implies Γpiv(y)− γpiv(y) < y for y sufficiently close
to 0.

Step 2. When y is sufficiently large, Γpiv(y)− γpiv(y) > y.

Let rmin = min {ri | i = 1, . . . , 2m− 1}. Since ∂ f /∂r > 0, for all i ≤ k, γi(y) ≤ vk −
f (rmin, y) This implies that

γpiv(y) ≤ vk − f (rmin, y).

By the same token,
Γpiv(y) ≥ v2m−k + f (rmin, y).

Let y2 be the positive solution to −y + 2 f (r, y) = 0 when r = rmin. Since −y + 2 f (r, y) is
strictly convex and is equal to 0 at y = 0 and y = y2, we have 2 f (r, y) > y for all y > y2.
Moreover vk ≥ v2m−k. Therefore, Γpiv(y)− γpiv(y) > y for y sufficiently large.

Proof of Lemma 4. From the definition of Ψi and ψi in (1) and (2), we can write the payoff
ui(g, G | θ) as:

eθ

1 + eθ

[
Ψi(g′, G′ | θ; A)Ψi(g, G | G′; A) + ψi(g′, G′ | θ; A)Ψi(g, G | g′; A)

]
+

evi

1 + eθ

[
ψi(g′, G′ | θ; B)ψi(g, G | g′; B) + Ψi(g′, G′ | θ; B)ψi(g, G | G′; B)

]
.
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From Stokey (2009, Proposition 5.3),

ψi(g′, G′ | θ; A) =
eR2(G′−θ) − eR1(G′−θ)

eR2(G′−g′) − eR1(G′−g′)
= e−(θ−g′)ψi(g′, G′ | θ; B),

Ψi(g′, G′ | θ; B) =
eR2(θ−g) − eR1(θ−g)

eR2(G−g) − eR1(G−g)
= e−(G

′−θ)Ψi(g′, G′ | θ; A);

and the remaining terms are given by (3) and (4). Hence,

ui(g, G | θ)− ui(g′, G′ | θ)

=
eθ

1 + eθ

[
(Ψi(g′, G′ | θ; A)(Ψi(g, G | G′; A)− 1) + ψi(g′, G′ | θ; A)Ψi(g, G | g′; A)

]
+

evi

1 + eθ

[
ψi(g′, G′ | θ; B)(ψi(g, G | g′; B)− 1) + Ψi(g′, G′ | θ; B)ψi(g, G | G′; B)

]
=

1 + eG′

1 + eθ
e−(G

′−θ)Ψi(g′, G′ | θ; A)

(
ui(g, G | G′)− eG′

1 + eG′

)

+
1 + eg′

1 + eθ
ψi(g′, G′ | θ; B)

(
ui(g, G | g′)− evi

1 + eg′

)
.

For θ ∈ [g, G], ui(g, G | θ) is increasing in G if G ≤ Φi(g) and is decreasing in g if
g ≥ φi(G). When these latter two conditions are satisfied,

ui(g, G | G′) ≥ ui(g, G′ | G′) = eG′/(1 + eG′),

ui(g, G | g′) ≥ ui(g′, G | g′) = evi /(1 + eg′).

This proves ui(g, G | θ) ≥ ui(g′, G′ | θ). Similarly, ui(g, G | θ) is decreasing in G if
G ≥ G′ ≥ Φi(g) and increasing in g if g ≤ g′ ≤ φi(G). When these conditions are
satisfied,

ui(g, G | G′) ≤ ui(g, G′ | G′) = eG′/(1 + eG′),

ui(g, G | g′) ≤ ui(g′, G | g′) = evi /(1 + eg′).

This proves ui(g, G | θ) ≤ ui(g′, G′ | θ).

Proof of Proposition 1. In the text, we show that any strategy profile σ that satisfies con-
ditions 1–3 of Definition 1 must have the property that (g[k](σ), G[k](σ)) ≡ (ĝ, Ĝ) belongs
to the set Σ̂(k). We need to show that any strategy profile σ that satisfies conditions 1–3 of
the proposition must be an equilibrium; i.e., no agent i can gain by deviating to another
(gi, Gi) within his span of control. The proof of the proposition proceeds in three steps:
(1) show that (ĝ, Ĝ) satisfies the Kuhn-Tucker necessary conditions for the solution of
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the constrained maximization problem (8) for each agent i and for every θ; (2) show that
(ĝ, Ĝ) is the only candidate solution to (8) that satisfies the Kuhn-Tucker necessary condi-
tions; and (3) verify that ui(ĝ, Ĝ | θ) is greater than the payoff from immediate adoption
of α or β when it is feasible. Finally, Lemma 3 establishes that Σ̂(k) is non-empty; hence
equilibrium existence follows.

Step 1. Let g
i

and gi denote the lower and upper bounds of Ig(i; σ), and Gi and Gi the
lower and upper bounds of IG(i; σ). A necessary condition for (ĝ, Ĝ) to solve problem (8)
is that it must satisfy the following Kuhn-Tucker conditions:

∂ui/∂G|(ĝ,Ĝ; θ) ≤ 0 if Ĝ = Gi,

∂ui/∂G|(ĝ,Ĝ; θ) = 0 if Ĝ ∈ (Gi, Gi),

∂ui/∂G|(ĝ,Ĝ; θ) ≥ 0 if Ĝ = Gi;


∂ui/∂g|(ĝ,Ĝ; θ) ≤ 0 if ĝ = g

i
,

∂ui/∂g|(ĝ,Ĝ; θ) = 0 if ĝ ∈ (g
i
, gi),

∂ui/∂g|(ĝ,Ĝ; θ) ≥ 0 if ĝ = gi.

Note that any feasible boundary solutions (g, G) with either g > θ or G < θ would
automatically satisfy the necessary conditions. In the first case β is adopted immediately;
in the second, α is adopted immediately. Thus, the necessary conditions have bite only
when g ≤ θ ≤ G. By the dynamic consistency property of Lemma 1, (ĝ, Ĝ) satisfies the
necessary conditions for for all θ ∈ [ĝ, Ĝ] if it satisfies the conditions for some θ ∈ (ĝ, Ĝ).
Further, by the single-crossing property of Lemma 1 and from the definition of the the
best-response functions, the necessary Kuhn-Tucker conditions can be re-stated as:

Φi(ĝ) ≤ Ĝ if Ĝ = Gi,

Φi(ĝ) = Ĝ if Ĝ ∈ (Gi, Gi),

Φi(ĝ) ≥ Ĝ if Ĝ = Gi;


φi(Ĝ) ≤ ĝ if ĝ = g

i
,

φi(Ĝ) = ĝ if ĝ ∈ (g
i
, gi),

φi(Ĝ) ≥ ĝ if ĝ = gi.

If Φi(ĝ) < Ĝ, condition 2(a) of Proposition 1 implies that Gi < Ĝ. Thus the feasible
span of control for agent i on the upper threshold is IG(i; σ) = [G[k](σ), G[k+1](σ)]. In
other words, we have Ĝ = Gi. This proves that last inequality on the left column of
the Kuhn-Tucker conditions. If Φi(ĝ) > Ĝ, then condition 2(a) implies Gi > Ĝ. Thus
IG(i; σ) = [G[k−1](σ), G[k](σ)], and we have Ĝ = Gi. This proves the first inequality on the
left column. Finally, if Ĝ ∈ (Gi, Gi), then Φi(ĝ) is neither strictly greater nor strictly less
than Ĝ. Hence, the second inequality on the left column holds. By a similar argument for
the lower threshold, (ĝ, Ĝ) indeed satisfies the necessary Kuhn-Tucker conditions for the
constrained maximization problem (8) for any belief θ ∈ [ĝ, Ĝ].

Step 2. We now show that there is no other feasible threshold (g′, G′) ∈ Ig(i; σ) ×
IG(i; σ) that satisfies the necessary Kuhn-Tucker conditions for belief θ ∈ [g′, G′]. Sup-
pose, by way of contradiction, such a (g′, G′) 6= (ĝ, Ĝ) exists. Since the preference for the
one-sided stopping problem is single-peaked, it must be that g′ 6= ĝ and G′ 6= Ĝ. Assume
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without loss of generality that ĝ < g′. Since both ĝ and g′ belong to Ig(i; σ), we must have
ĝ < gi and g′ > g

i
. The necessary Kuhn-Tucker conditions then imply that

φi(G′) ≥ g′ > ĝ ≥ φi(Ĝ).

We claim that Ĝ ≥ vi. Suppose the claim were not true and that Ĝ < vi. By Lemma 2,
φi(Ĝ) = Ĝ. As ĝ ≥ φi(Ĝ) from the displayed inequalities above and ĝ ≤ Ĝ, we must have
ĝ = Ĝ < vi. It follows that Φi(ĝ) > ĝ = Ĝ, and, by the Kuhn-Tucker conditions, Ĝ = Gi.
In this case, G′ < Ĝ < vi and therefore φi(G′) = G′ < Ĝ = φi(Ĝ), which contradicts the
displayed inequalities.

Since Ĝ ≥ vi is true, φi(Ĝ) ≥ g∗i . From the displayed inequalities, we obtain g′ ≥ g∗i
and ĝ ≥ g∗i . Since the best-response functions are symmetric, the same argument implies
that G′ ≤ G∗i and Ĝ ≤ G∗i , and at least one of g′ and ĝ is less than or equal to vi.

There remains two cases that we need to consider. First, suppose Ĝ < G′. In this
case, vi < G′ ∈ (vi, G∗i ]. As φi is strictly decreasing between (vi, G∗i ], we would have
φi(G′) < φi(Ĝ), which contradicts the displayed inequalities.

Finally, suppose Ĝ > G′. The necessary Kuhn-Tucker conditions then imply Φi(ĝ) ≥
Ĝ and Φi(g′) ≤ G′. Thus we have

G∗i ≥ Φi(ĝ) ≥ Ĝ > G′ ≥ Φi(g′).

If g′ > vi, then G′ > vi. Since G′ ∈ (vi, G∗i ) and φi is decreasing in this range, we have
φi(G′) < φi(vi) = vi < g′, which contradicts the inequality φi(G′) ≥ g′. Hence, it must be
the case that g′ ≤ vi. By the same reasoning, we must have G′ ≥ vi.

So far, we have shown that g′ ∈ (g∗i , vi] and G′ ∈ [vi, G∗i ). From the two sets of
inequalities displayed above, we also have

G′ − g′ ≥ Φi(g′)− φi(G′).

Both the curve (g, Φi(g)) and the line g + G = 2vi pass through (vi, vi) and (g∗i , G∗i ).
Since Φi is strictly concave (part 3 of Lemma 2), for any g′ ∈ (g∗i , vi], Φi(g′) ≥ 2vi − g′,
with strict inequality if g′ 6= vi. Similarly, the strictly convexity of φi implies that for any
G′ ∈ [vi, G∗i ), φi(G′) ≤ 2vi − G′, with strict inequality if G′ 6= vi. Since (g′, G′) 6= (vi, vi),
we must have

Φi(g′)− φi(G′) > G′ − g′,

a contradiction.

Step 3. We have established that, for any θ, the only (g, G) that satisfies the neces-
sary Kuhn-Tucker conditions with θ ∈ [g, G] is (g, G) = (ĝ, Ĝ). Since a solution to the
constrained maximization problem (8) always exists, if we can show that ui(ĝ, Ĝ | θ) is
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greater than evi /(1 + eθ) when it is feasible to adopt β immediately at θ, and is greater
than eθ/(1+ eθ) when it is feasible to adopt α immediately, then (ĝ, Ĝ) must be a solution
to (8).

When θ ≥ Ĝ, α is adopted immediately under (ĝ, Ĝ). Adopting β immediately is
feasible only when θ ≤ gi. But in this case, ĝ would have to be strictly less than gi (as
Ĝ > ĝ), and the necessary Kuhn-Tucker conditions would require that ∂ui/∂g|(ĝ,Ĝ; θ) ≤ 0.
This implies that Ĝ ≥ vi, meaning that agent i would prefer α to β at θ.

When θ ≤ ĝ, β is chosen immediately under (ĝ, Ĝ). Adopting α immediately is feasi-
ble only if θ ≥ Gi. Following the above logic, this would require that ∂ui/∂G|(ĝ,Ĝ; θ) ≥ 0.
This implies ĝ ≤ vi, and agent i would prefer β to α.

When θ ∈ (ĝ, Ĝ), adopting β immediately is feasible if θ ≤ gi. But in this case the
necessary Kuhn-Tucker conditions imply that ∂ui/∂g|(ĝ,Ĝ; θ) ≤ 0 (as θ ≥ ĝ). It follows
from Lemma 1 that ∂ui/∂g|(g,Ĝ; θ) < 0 for all g > ĝ. Thus ui(ĝ, Ĝ | θ) > ui(θ, Ĝ | θ) =

evi /(1 + eθ). Adopting α immediately is feasible if θ > Gi. But in this case the necessary
Kuhn-Tucker conditions imply that ∂ui/∂G|(ĝ,Ĝ; θ) ≥ 0, and it follows that ui(ĝ, Ĝ | θ) >

ui(ĝ, θ | θ) = eθ/(1 + eθ).

Proof of Proposition 2. By part 5 of Lemma 2, when v1 = . . . = v2m−1 and r1 ≤ . . . ≤
r2m−1, Φpiv = Φk and φpiv = φk. Hence Σ̂(k) =

{
(g∗k , G∗k )

}
is a singleton by part 1

of Lemma 2. When r1 = . . . = r2m−1, Φpiv = Φk and φpiv = φ2m−k. Therefore, the
equilibrium thresholds (ĝ, Ĝ) must satisfy:

vk − ĝ− f (rk, Ĝ− ĝ) = 0,

f (r2m−k, Ĝ− ĝ)− Ĝ + v2m−k = 0.

Let ŷ = Ĝ− ĝ. These two equations reduce to

−ŷ + 2 f (rk, ŷ) = vk − v2m−k.

The function −y + 2 f (rk, y) is convex and is equal to 0 when y = 0 and y = G∗k − g∗k . So
−y + 2 f (rk, y) is positive and strictly increasing for y ≥ G∗k − g∗k . Since vk − v2m−k ≥ 0,
there is a unique ŷ > 0 that satisfies the equilibrium condition. The equilibrium lower
threshold ĝ satisfies Φk(ĝ)− ĝ = ŷ, and since Φk(g)− g is strictly decreasing in g, there is
a unique ĝ associated with each ŷ. Similarly, since Ĝ− φ2m−k(Ĝ) = ŷ and G− φ2m−k(G)

is strictly increasing in G, there is a unique Ĝ associated with each ŷ. Hence the set Σ̂(k)
is a singleton.

In general, when agents differ in both preferences and discount rates, the model can
admit multiple equilibria. Panel (a) of Figure 5 provides one example. Suppose both
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(ĝ, Ĝ) and (ĝ′, Ĝ′) are equilibria of the game. They must satisfy:

Φpiv(ĝ)− ĝ = Ĝ− φpiv(Ĝ),

Φpiv(ĝ′)− ĝ′ = Ĝ′ − φpiv(Ĝ′).

By Lemma 2, Φi(g)− g is positive and strictly decreasing if and only if g < vi. Hence,
Φpiv(g) − g is positive and strictly decreasing if and only if g < vk under decision rule
k. Similarly, G − φpiv(G) is positive and strictly increasing if and only if G > v2m−k.
Proposition 1 already establishes that G− g = Φpiv(g)− g > 0 in any equilibrium. Hence,
both ĝ and ĝ′ are strictly lower than vk. By a similar reasoning, Ĝ and Ĝ′ are both strictly
greater than v2m−k. Therefore, by the two equations above, ĝ > ĝ′ implies Ĝ < Ĝ′, and
ĝ < ĝ′ implies Ĝ > Ĝ′. Furthermore, when k = m, vk = v2m−k = vm, so any equilibrium
waiting region (ĝ, Ĝ) must contain vm in its interior.

Proof of Proposition 3. Since Ĝ = Φpiv(ĝ), we have

Ĝ = min{θ | #{i|Φi(ĝ) ≤ θ} ≥ k} ≤ min{θ | #{i|G∗i ≤ θ} ≥ k} = G∗(k).

Similarly,

ĝ = max{θ | #{i|φi(Ĝ) ≥ θ} ≥ k} ≥ min{θ | #{i|g∗i ≥ θ} ≥ k} = g∗(k).

Proof of Proposition 4. From the proof of Lemma 3, Γpiv(y)− γpiv(y) is less than y for all
y sufficiently close to 0 and is greater than y for all y > y2. Hence, any parameter that
lowers Γpiv − γpiv will raise the largest and smallest solutions to the equation Γpiv(y)−
γpiv(y) = y (Milgrom and Roberts 1994). Since Φpiv(g)− g is strictly decreasing for g <

vk, its inverse function γpiv(y) is strictly decreasing for y > 0. For any g, an increase in
k increases Φpiv(g)− g, so it raises its inverse γpiv(y). Similarly, an increase in k lowers
Γpiv(y). Hence y(v, r, k) and y(v, r, k) increase in k.

By the comparative statics result of Lemma 2, Φpiv(g)− g increases while G− φpiv(G)

decreases in r. Therefore Γpiv(y)− γpiv(y) increases in r, which implies that y(v, r, k) and
y(v, r, k) decrease in r.

Proof of Proposition 5. Pick some ε ≤ min{vm+1 − vm, vm − vm−1}. By part 6 of Lemma
2, there exists ri such that Φi(g) − g ≤ ε for any g ≥ vm − ε and G − φi(G) ≤ ε for
G ≤ vm + ε if ri ≥ ri. Set r = max{r1, . . . , r2m−1}. We prove the proposition for the case
ri ≥ r for some i ≤ m. The complementary case if i ≥ m can be established in a similar
manner.

39



For j ≥ m + 1, we have φj(vm + ε) = vm + ε; and for j ≤ m, we have φj(vm + ε) <

vm + ε. Furthermore, because ri ≥ r,

vm + ε > φi(vm + ε) ≥ vm.

This means that given G = vm + ε, only m − 1 agents would vote to adopt β when the
posterior belief is vm + ε, but m agents, or more, would vote for β at some posterior belief
greater than vm. Hence, φpiv(vm + ε) ∈ [vm, vm + ε). Let ỹ ≡ vm + ε− φpiv(vm + ε) > 0.
By definition, Γpiv(ỹ) = vm + ε. Furthermore, since limy→0 γpiv(y) = vm under simple
majority rule, and γpiv(y) is strictly decreasing in y for y > 0, we have γpiv(ỹ) < vm. It
follows that

Γpiv(ỹ)− γpiv(ỹ) > ε ≥ ỹ,

where the last inequality obtains because ε − ỹ = φpiv(ỹ) − vm ≥ 0. Finally, from the
proof of Lemma 3, we know that Γpiv(y)− γpiv(y) < y when y is sufficiently close to 0.
Hence, by continuity, there exists ŷ ∈ (0, ỹ) that satisfies the equilibrium condition:

Γpiv(ŷ)− γpiv(ŷ) = ŷ.

Furthermore, the equilibrium thresholds satisfy Ĝ = Γpiv(ŷ) ∈ (vm, vm + ε] and ĝ =

φpiv(Ĝ) ∈ (vm − ε, vm].

Proof of Proposition 6. We prove a more general version of the proposition for any deci-
sion rule k ≥ m, and show that there no equilibrium such that Ĝ− ĝ > ζ if

#{i | ri < r(ζ)} ≤ 2m− k− 1.

The statement of the proposition follows by setting k = m.

Pick any ζ > 0. Choose r such that −ζ + 2 f (r, ζ) = v2m−1 − v1. Since −y + 2 f (r, y)−
(v2m−1 − v1) is strictly convex and is strictly less than 0 when y = 0 and equal to zero
when y = ζ, we have 2 f (r, y)− (v2m−1 − v1) > y for all y > ζ. For any y > 0, Γi(y) =

vi + f (ri, y) increases in vi and ri. Since there are at least k agents with discount rates
greater than r,

Γpiv(y) ≥ v1 + f (r, y).

Similarly, since γi(y) = vi − f (ri, y) increases in vi and decreases in ri, and since there are
at least k agents with discount rates greater than r,

γpiv(y) ≤ v2m−1 − f (r, y).
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Consequently, for all y > ζ,

Γpiv(y)− γpiv(y) ≥ 2 f (r, y)− (v1 − v2m−1) > y.

It follows that any equilibrium ŷ must satisfy ŷ ≤ ζ.

Proof of Proposition 7. Pick any ε > 0. Choose r̃ such that −ε + 2 f (r̃, ε) = 0 (that is, for
an agent with discount rate r̃, the width of his optimal waiting region in a single-person
decision problem is ε). Since −y + 2 f (r̃, y) is strictly convex and is equal to 0 when y = 0
and y = ε, we have −y + 2 f (r̃, y) < 0 for all y < ε. Suppose #{i | ri ≥ r̃} ≤ 2(k−m). We
first show that there exists some j ∈ {2m− k, . . . , k} such that (a) rj < r̃; (b) #{i ≤ j− 1 |
ri ≥ r̃} ≤ j + k− 2m; and (c) #{i ≥ j + 1 | ri ≥ r̃} ≤ k− j.

Let η1 ≡ #{i < 2m − k | ri ≥ r̃} denote the number of agents with discount rates
greater than r̃ that are on the left of agent 2m− k. Let η2 ≡ #{i > k | ri ≥ r̃} denote the
number of agents with discount rates greater than r̃ that are on the right of agent k. Since
there are 2(k−m) + 1 agents in the group {2m− k, . . . , k} and there are at most 2(k−m)

agents with discount rates greater than r̃, there must be at least one j ∈ {2m− k, . . . , k}
such that rj < r̃. This establishes (a). Next, the the number of agents between 2m− k and
k (inclusive) with discount rates less than r̃ is at least

(2m− 1)− 2(k−m)− (2m− k− 1− η1)− (2m− k− 1− η2) = η1 + η2 + 1.

Hence, there is some agent j ∈ {2m− k, . . . , k} such that rj < r̃, and

#{i ∈ {2m− k, . . . , j− 1} | ri < r̃} ≥ η1,

#{i ∈ {j + 1, . . . , k} | ri < r̃} ≥ η2.

Since the number of agents between 2m − k and j − 1 (inclusive) is j − 2m + k, there is
at most j − 2m + k − η1 agents in this group with discount rates greater than r̃. Hence,
#{i ≤ j− 1 | ri ≥ r̃} ≤ j + k− 2m. Similarly, #{i ≥ j + 1 | ri ≥ r̃} ≤ k− j. This establishes
(b) and (c).

Consider j that satisfies (a), (b) and (c). For any y > 0, Γi(y) = vi + f (ri, y) is increasing
in vi and increasing in ri, and since there are at most j− k + 2m agents from 1 to j with
discount rates greater than r̃, we have

#{i ≤ j | Γi(y) ≤ vj + f (r̃, y)} ≥ 2m− k.

Therefore there are at most (2m− 1)− (2m− k) = k− 1 agents with Γi(y) ≥ y + 2 f (r̃, y).
We conclude that

Γpiv(y) ≤ y + f (r̃, y).
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Similar reasoning also establishes that

γpiv(y) ≥ y− f (r̃, y).

Hence,
Γpiv(y)− γpiv(y) ≤ 2 f (r̃, y) < y

for all y < ε. This means that the equilibrium ŷ that satisfies Γpiv(ŷ)− γpiv(ŷ) = ŷ must
be such that ŷ ≥ ε.

Proof of Proposition 8. We first prove inequality (10) in the text. Then we show that all
agents (except agent 1) prefer equilibrium Ps to equilibrium P3 in some interval of beliefs
containing (v2 + v3)/2, and that there is no belief such that all agents (except agent 1)
prefer P3 to Ps. Finally the proof the completed by showing that equilibrium P3 dominates
P2 and P1.

Step 1. Equilibrium P3 satisfies:

v2 − ĝ3 − f (r, Ĝ3 − ĝ3) = 0,

f (r, Ĝ3 − ĝ3)− Ĝ3 + v3 = 0.

Subtracting the first equation from the second and letting ŷ3 = Ĝ3 − ĝ3, we obtain:

−ŷ3 + 2 f (r, ŷ3) = −(v3 − v2).

Under super-majority rule, the equilibrium Ps must satisfy:

−ŷs + 2 f (r, ŷs) = v3 − v2.

In the proof of Lemma 2, we show that the width y∗ of the unconstrained optimal waiting
region satisfies −y∗ + 2 f (r, y∗) = 0. Since −y + 2 f (r, y) < 0 for y < y∗ and is strictly
increasing for y > y∗, we have

ŷs > y∗ > ŷ3.

Furthermore, subtracting −y∗ + 2 f (r, y∗) = 0 from from the equation that defines ŷ3

yields:
y∗ − ŷ3 + (v3 − v2) = 2

(
f (r, y∗)− f (r, ŷ3)

)
.

Since f (r, y) is convex with ∂ f (r, y∗)/∂y = 1, and y∗ is greater than ŷ3, the right-hand-side
is smaller than 2(y∗ − ŷ3), which gives

y∗ − ŷ3 > v3 − v2.
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Similarly,
ŷs − y∗ + (v3 − v2) = 2 ( f (r, ŷs)− f (r, y∗)) .

Since f (r, ·) is convex and ŷs > y∗, the right-hand-side is greater than 2(ŷs − y∗), which
gives

ŷs − y∗ < v3 − v2.

This proves inequality (10).

Step 2. Adding the two equilibrium conditions equilibrium P3, it is straightforward
to see that the equilibrium waiting region is centered around v = (v2 + v3)/2. Similarly,
the equilibrium waiting region associated with Ps is also centered around v. Instead of
writing utility as a function of the thresholds g and G, we can write it as a function of the
center of the waiting region v and its width y, where y = ŷs, ŷ3.

Using equations (3) and (4) and after some re-arrangement, we obtain:

uj(g, G | θ0) =
1

1 + eθ0

q̃j(v, y; θ0, vj)

qj(y)
,

where

qj(y) = e−R1y/2 + e−R2y/2,

q̃j(v, y; θ0, vj) =
Q1e−R1y/2 −Q2e−R2y/2

e−R1y/2 − e−R2y/2 ;

with Q1 = evj eR1(θ0−v) + eveR2(θ0−v) and Q2 = eveR1(θ0−v) + evj eR2(θ0−v).

When θ0 = v, the utility of agent j is

uj(g, G | v) =
1

1 + ev
evj + ev

qj(y)
.

The value of qj(y) decreases in y for y < y∗, reaches a minimum at y = y∗ and increases
thereafter. At y = y∗, we have

dqj(y∗)
dy

= −R1

2
e−R1y∗/2 − R2

2
e−R2y∗/2 = 0.
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Since ŷs > y∗ > ŷ3, the difference qj(ŷs)− qj(ŷ3) can be written as

ˆ ŷs−y∗

0

dqj(y∗ + x)
dy

dx +

ˆ y∗−ŷ3

0

dqj(y∗ − x)
dy

dx

<

ˆ y∗−ŷ3

0

(
dqj(y∗ + x)

dy
+

dqj(y∗ − x)
dy

)
dx

=

ˆ y∗−ŷ3

0

1
2

R2e−R2y∗/2
(
(e−R1x/2 + eR1x/2)− (e−R2x/2 + eR2x/2)

)
dx < 0.

The first inequality follows from inequality (10) and the fact that dqj(y∗ + x)/dy > 0 for
x > 0; the equality follows taking the derivative of qj and using the condition dqj(y∗)/dy =

0; and the final inequality follows from the fact that R2 > −R1 and e−Rx + eRx is increas-
ing in R for x > 0. This demonstrates that at θ0 = v the payoff to any agent j 6= 1 is higher
in equilibrium Ps than in equilibrium P3.

Next, we show that agent 2 is strictly better off under Ps than under P3 for all θ0 ∈
[ĝ3, v]. Note that

∂q̃2

∂y
=

(R2 − R1)(ev − ev2)(eR1(θ0−v) − eR2(θ0−v))

2ey/2(e−R1y/2 − e−R2y/2)2
.

Thus, for θ0 ∈ [ĝ3, v], q̂2 is increasing in y since v2 < v. For such θ0, we therefore have

u2(ĝs, Ĝs | θ0) =
1

1 + eθ0

q̃2(v, ŷs; θ0, v2)

q2(ŷs)
>

1
1 + eθ0

q̃2(v, ŷ3; θ0, v2)

q2(ŷ3)
= u2(ĝ3, Ĝ3 | θ0).

By a symmetric argument, we can also show that agent 3 strictly prefers equilibrium
Ps to P3 for all θ0 ∈ [v, Ĝ3]. By continuity, there is an interval which contains v such that
both agents 2 and 3 strictly prefer super-majority rule to simple majority rule if the initial
belief belongs to that interval.

Finally, suppose θ0 ∈ (ĝs, ĝ3). Agent 2 gets utility u2(ĝs, Ĝs | θ0) under equilibrium
Ps, while β would be adopted immediately under equilibrium P3. Since u2(g, Ĝs | θ0) is
decreasing in g if g < φ2(Ĝs), we have

u2(ĝs, Ĝs | θ0) > u2(θ0, Ĝs | θ0) = ev2/(1 + eθ0).

Thus agent 2 prefers equilibrium Ps to equilibrium P3 for this range of θ0.

For θ0 ≤ ĝs, equilibrium Ps and P3 yields the same outcome.

Moreover we have already shown that agent 2 prefers Ps to P3 for θ0 ∈ [ĝ3, v]. Thus
agent 2 prefers Ps to P3 for all θ0 ≤ v. Similarly agent 3 prefers Ps to P3 for all θ0 ≥ v.
Therefore, there is no θ0 such that both agent 2 and agent 3 prefer equilibrium P3 to
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equilibrium Ps.

Step 3. Let (ĝl, Ĝl) be the waiting region in corresponding to equilibrium Pl (l = 1, 2, 3).
By Proposition 2, we have (ĝ3, Ĝ3) ⊃ (ĝ2, Ĝ2) ⊃ (ĝ1, Ĝ1).

Take (g, G) = (ĝ3, Ĝ3) and take (g′, G′) = (ĝl, Ĝl) for l = 1, 2. In equilibrium P3,
the relevant pivotal functions are Φ2 and φ3. For agent 2, we have Φ2(ĝ3) = Ĝ3 and
φ2(Ĝ3) < φ3(Ĝ3) = ĝ3. For agent 3, we have Φ3(ĝ3) > Φ2(ĝ3) = Ĝ3 and φ3(Ĝ3) = ĝ3.
Therefore, by Lemma 4, uj(ĝ3, Ĝ3 | θ0) ≥ uj(ĝl, Ĝl | θ0) for j = 2, 3 and for θ0 ∈ [ĝl, Ĝl].

Suppose θ0 ∈ (Ĝl, Ĝ3] (l = 1, 2). Equilibrium P3 entails some waiting while equilib-
rium Pl entails immediate adoption of α. For agent 2 we have Φ2(ĝ3) = Ĝ3, which implies
that u2(ĝ3, G | θ0) is increasing in G for G ≤ Ĝ3. Thus

u2(ĝ3, Ĝ3 | θ0) ≥ u2(ĝ3, θ0 | θ0) = eθ0/(1 + eθ0).

We also have Φ3(ĝ3) > Ĝ3, which implies that u3(ĝ3, G | θ0) is increasing in G for G ≤ Ĝ3.
Therefore the same conclusion holds for agent 3.

Suppose θ0 ∈ [ĝ3, ĝl) (l = 1, 2). Equilibrium P3 entails some waiting while equilibrium
Pl entails immediate adoption of β. For agent 2 we have φ2(Ĝ3) < ĝ3, which implies that
u2(g, Ĝ3 | θ0) is decreasing for g ≥ ĝ3. Therefore

u2(ĝ3, Ĝ3 | θ0) ≥ u2(θ0, Ĝ3 | θ0) = ev2/(1 + eθ0).

For agent 3, φ3(Ĝ3) = ĝ3, which implies u3(g, Ĝ3 | θ) is decreasing for g ≥ ĝ3. Therefore
the same conclusion holds.

Finally, for θ0 > Ĝ3 or θ0 < ĝ3, the outcomes in equilibrium P3 are the same as those
in equilibria P1 and P2, so the equilibrium payoffs are equal.

Proof of Proposition 9. For θ0 ≥ Ĝ or θ0 ≤ ĝ, majority rule and super-majority rule yield
the same outcome. There are four other cases to consider.

1. θ0 ∈ [G∗m, Ĝ]. For belief in this region, super-majority rule will lead to some waiting
while majority rule leads to immediate adoption of α. By Lemma 2, for j ≤ m.

Φj(ĝ) ≤ Φm(ĝ) < G∗m.

Since uj(ĝ, G | θ0) is decreasing in G if G > Φj(ĝ), for θ0 ∈ [G∗m, Ĝ] we have

uj(ĝ, Ĝ | θ0) < uj(ĝ, θ0 | θ0) = eθ0/(1 + eθ0).

Therefore agents from 1 to m strictly prefer majority rule to super-majority rule.

2. θ0 ∈ [vm, G∗m]. As in the proof of Proposition ??, we can write the utility of agent j in
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terms of the center of the waiting region vm and the width y:

uj(g, G | θ0) =
1

1 + eθ0

q̃j(vm, y; θ0)

qj(y)
,

where the function q̃j and qj are defined in the proof of the earlier proposition. At θ0 = vm,
the utility of agent j is

uj(g, G | vm) =
1

1 + evm

vj + vm

qj(y)
.

Since qj(y) is decreasing in y for y > y∗, we have uj(g∗, G∗ | vm) > uj(ĝ, Ĝ | vm) for
j = 1, . . . , 2m − 1. Since q̃j is decreasing in y for θ0 > vm and vj < vm, ŷ > y∗ implies
uj(g∗, G∗ | θ0) > uj(ĝ, Ĝ | θ0) for j = 1, . . . , m.

3. θ0 ∈ [g∗m, vm]. Recall that uj(g∗, G∗ | vm) > uj(ĝ, Ĝ | vm) for j = 1, . . . , 2m− 1. Since
q̃j is decreasing in y for θ0 < vm and vj > vm, and since qj(y) is decreasing in y for y > y∗,
ŷ > y∗ implies uj(g∗, G∗ | θ0) > uj(ĝ, Ĝ | θ0) for j = m, . . . , 2m− 1.

4. θ0 ∈ [ĝ, g∗m]. Super-majority rule will lead to some waiting while majority rule leads
to immediate adoption of β. By Lemma 2, for j ≥ m, φj(Ĝ) ≥ φm(Ĝ) > g∗m. Since uj(g, Ĝ |
θ0) is increasing in g if g < φj(Ĝ), for θ0 ∈ [ĝ, g∗m] we have uj(ĝ, Ĝ | θ0) < evj /(1 + eθ0).
Therefore agents from m to 2m− 1 strictly support majority rule.

Note from cases 2 and 3 above that all agents strictly prefer majority rule to super-
majority rule when θ0 = vm. Since preferences are continuous in θ0, the second part of the
proposition follows.

Proof of Proposition 10. Let k > m, and let the equilibrium thresholds under super-
majority rule be represented by g∗k and G∗k . Similarly, let the equilibrium thresholds under
majority rule be represented by g∗m and G∗m. For θ0 ≥ G∗k or θ0 ≤ g∗k , majority rule and
super-majority rule yield the same outcome. There are three other cases to consider.

1. θ0 ∈ [G∗m, G∗k ]. For belief in this region, super-majority rule will lead to some waiting
while majority rule leads to immediate adoption of α. We have, for j ≤ m,

Φj(g∗k ) ≤ Φm(g∗k ) ≤ Φm(g∗m) = G∗m,

where the first inequality follows from the comparative statics property of Lemma 2 and
rj ≥ rm, while the second inequality follows from the non-monotonicity property of
Lemma 2 and g∗k < g∗m. Since uj(g∗k , G | θ0) is decreasing in G if G ≥ G∗m ≥ Φj(g∗k ),
for θ0 ∈ [G∗m, G∗k ] we have

uj(g∗k , G∗k | θ0) ≤ uj(g∗k , θ0 | θ0) = eθ0/(1 + eθ0).
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Therefore agents from 1 to m prefer majority rule to super-majority rule.

2. θ0 ∈ [g∗k , g∗m]. Super-majority rule will lead to some waiting while majority rule
leads to immediate adoption of β. By the same reasoning as in case 1, for j ≤ m we have

φj(G∗k ) ≥ φm(G∗k ) ≥ φm(G∗m) = g∗m,

which implies uj(g∗k , G∗k | θ0) ≤ evj /(1 + eθ0). Therefore agents from 1 to m support
majority rule.

3. θ0 ∈ [g∗m, G∗m]. In case 1 and case 2, we have already shown that for j ≤ m, Φj(g∗k ) ≤
G∗m and φj(G∗k ) ≥ g∗m. By Lemma 4, we obtain

uj(g∗k , G∗k | θ0) ≤ uj(g∗m, G∗m | θ0).

Therefore agents from 1 to m prefer majority rule to super-majority rule.
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