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1. Introduction

Collective actions, such as riots, protests and political campaigns, are often immersed
in rumors. Perhaps the most dramatic theater to witness rumors in action is a political
revolution. Amid the recent Tunisian revolution, Ben Ali, the ex-Tunisian leader, was
said to have fled his country. This was confirmed after conflicting rumors about his
whereabouts, and finally led to the end of street protests. A while later in Egypt, it
was widely reported that Mubarak’s family had left for London, which was believed
by many as a clear sign of fragility of the regime. Similar rumors about Qaddafi and
his family appeared in Libya when the battle between the opposition and the regime
intensified. Rumors are not unique to the series of revolutions in the Arab Spring.
During the 1989 democracy movement in China, rumors repeatedly surfaced about
the death of the leaders, Deng Xiaoping and Li Peng, as well as the divide among
communist leaders, all of which indicated the vulnerability of the regime.1

Are rumors just rumors? In many cases, yes. Rumors that spread during tur-
moils often quickly disappear without leaving a trace. That seems to be natural as
rational individuals may heavily discount unreliable information they receive in those
situations. However many historical incidents suggest that rumors often turn out to
be particularly effective in mobilization. Examples abound. The Velvet Revolution
in Czechoslovakia was famously described as a “revolution with roots in a rumor”
(Bilefsky 2009). At the dawn of the revolution in 1989, a prominent (false) rumor that
a 19-year old college student was brutally killed by the police triggered many other-
wise hesitant citizens to take to the streets. The revolution gained huge momentum
right after that and the regime collapsed a few days later. In the Arab Spring, the
news about Mubarak’s family proved to be false, yet the opposition credited it for
“mark[ing] a new phase” in their campaign.2 Chinese history also offers many anec-
dotes in which rumors mobilized mass participation, including the Boxer Uprising,
the Republican Revolution, and the May Fourth Movement.3 Similarly, riots are often
sparked by rumors as well: the 1921 Tulsa race riot, the 1967 Newark riot and the 2004
Rome riot provide dramatic examples.

A common interpretation of the role of rumors in mass movements is that indi-
viduals are just blindly herded by rumors. However we adopt the position that indi-

1There were widespread rumors of many variants that Deng died of illness during the protest and
that Li was gun shot to death. It was also widely rumored that some senior leaders in the Communist
Party wrote an open letter to oppose any actions against students. Some of these rumors were repeated
in the print media. See, for example, the news report in the daily newspaper Ming Pao on June 6, 1989.

2World Tribune reported on January 28, 2011 that “. . . confirmed by a Western diplomat, . . .
Mubarak’s wife, Suzanne, son, Gamal, and granddaughter arrived in London on a private jet as Egypt’s
defense minister secretly flew to the United States.”

3Zhang (2009) documents these events in details, supplemented by several contemporary cases in
China.
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viduals are fully aware that rumors circulating in times of turmoil may or may not be
well founded, and that they update their beliefs in a Bayesian manner. Since rumors
are widely circulated and commonly observed, they may serve as a coordination de-
vice just like a public signal in a coordination game. We explain why some rumors
are effective in mobilizing participation in collective actions while others are simply
ignored.

In this paper, we focus on two key aspects of rumors: that they may be true or not
true, and that people talk about them. Individuals in times of uncertainty and crisis
often seek others’ opinions and discuss with peers about their judgment and evalu-
ation of rumors. Information from fellow participants can influence their beliefs and
even actions. We show that such “idle talk” about rumors between individuals could
potentially overcome their skepticism and amplify the impact of rumors on mobiliza-
tion. It is even possible that rumors can have a greater impact on mobilization than
does fully trustworthy information.

Specifically, we model political revolution as a coordination game among a large
number of citizens, who decide whether to revolt against the regime or not. Citizens
are uncertain about the regime’s strength and possess dispersed information on it. In
this model, global strategic complementarities arise, i.e., citizen’s incentive to revolt
increases with the aggregate action of all other citizens. If the number of participants
is sufficiently high, the regime collapses; otherwise it survives. Before citizens take
actions, they hear a rumor about the strength of the regime. This rumor is a pub-
licly observed message, which could be either an informative signal on the regime’s
strength or an uninformative noise unrelated to fundamentals. Citizens assess the in-
formativeness of the rumor based on their own private information on the regime. As
a consequence of diverse private information among citizens, their assessment may
also differ. Citizens are also allowed to communicate with one another and exchange
their assessment on the rumor. In other words, they tell each other whether they be-
lieve the rumor or not.

In this model, citizens understand that rumors could be uninformative and there-
fore remain skeptical of them. They make an inference on how likely a rumor is infor-
mative based on their own private information, using Bayes’ rule. The likelihood they
assign that the rumor is informative is endogenous: if the rumor is far different from
what the citizen personally knows about the regime, she tends to discount it more
heavily. One obvious implication of this mechanism is that very extreme rumors—
news that almost no citizens would believe—have little effects on equilibrium out-
comes. Not surprisingly, due to their skepticism, citizens are less responsive to the
news they hear: rumors against the regime mobilize less attackers, compared to the
case where such news is known to be trustworthy.
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When citizens are allowed to communicate with each other, a fraction of the pop-
ulation (those with intermediate private information) will decide to attack the regime
depending on whether their peers tell them that they believe the rumor or not. Citizens
who receive confirmatory messages believe that the regime strength is more likely to
be close to what the rumor indicates. Therefore, when they form their posterior belief,
they assign higher weight to states of nature which are close to the rumor. In other
words, they will be more responsive to the rumor. Furthermore, when the rumor is
actually close to the true regime strength, more citizens will believe it is sufficiently in-
formative and send confirmatory messages to their peers. As a consequence, a higher
fraction of citizens will receive confirmatory messages and attack the regime. There-
fore, a rumor against the regime which is near the true state mobilizes more attackers
given communication than without communication. By the same mechanism, when a
negative rumor is far from the truth, citizens will be even more skeptical given com-
munication because most of their peers do not believe it. In short, citizens on the whole
are better informed about whether the rumor they hear is close to the underlying state
than they are without communication.

Interestingly and surprisingly, we find that this communication effect could make
rumors even more powerful than trustworthy news in mobilizing individuals. Sup-
pose that citizens hear a rumor against the regime, and they are allowed to commu-
nicate with each other about its informativeness, it is possible that the regime would
survive if all of them fully believe that the rumor is trustworthy or informative, but
would collapse if they believe the rumor may be uninformative.

In this paper, we also investigate the role of sentiment—the public’s perception
of what untrustworthy news would sound like—and show that it is a double-edged
sword. On the one hand, the regime could manipulate perceptions and discredit neg-
ative information against itself, so as to increase the likelihood of its survival. On the
other hand, systematic propaganda attempts by the government to spread news about
its alleged strength only make rumors about the regime’s weakness more credible.

Given rumors can threaten the survival of the regime, it is natural to think the
regime may increase its chance of survival by blocking any public information against
it and only allowing positive rumors to circulate. We investigate this conjecture using
our model and study the effects of censorship. We find that censorship does not nec-
essarily help the regime to survive, as citizens would interpret the absence of rumors
as a sign of bad news for the regime.

Our work enriches the global games literature in a couple of directions. We offer
a specification of public signals that allow us to capture people’s skepticism toward
the public information they observe. A common implicit assumption in the literature
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is that citizens believe the public signal is informative. When they form the posterior
belief on the fundamental, citizens assign a constant weight on the public signal based
on its relative precision to private signals. The implication is that citizens would not
adjust the weight, even though the public signal is remarkably different from what
their own private information suggests. However, such updating rule seems to be
counter-intuitive, in view of the fact that individuals tend to disbelieve information
which is too different from their priors. Our model provides a formal justification us-
ing mixture distributions to explain why the standard linear updating rule may not be
appropriate, and why skepticism toward rumors is qualitatively different from having
a public signal with low precision.

In much of the global games literature, citizens are assumed to only respond to
signals they observe, and further interaction between citizens are often left out for the
sake of simplicity and tractability.4 In reality, individuals do exchange information
with each other before they make decisions and take actions. This is especially true
in collective actions such as protests, demonstrations and revolutions. Our work ex-
tends the standard setup to study communication among citizens. We model direct
interaction between citizens by allowing them to communicate privately, rather than
just observing a public signal of what others are doing. We find that these interactions
can have powerful effects that overcome individual skepticism to make rumors more
powerful than trustworthy news at the aggregate level.

This paper should not be interpreted as contradicting the literature that stresses
structural factors as root causes for a revolution (Skocpol 1979). Structural factors,
such as the state of the economy and international pressure, are those that make a
society “ripe” for revolution. However, it has been noted that structural factors are
not sufficient for a successful revolution. In line with Bueno de Mesquita (2010), we
argue that some random factors also play a role in determining the fate of a revolution.
In our model, the realization of rumors serves as a source of randomness. In contrast
to the literature with multiple equilibria, our model features unique equilibrium. We
attribute the fundamental cause of success or failure of a revolution to the regime’s
strength. However, for the same strength of a regime, it would collapse when the
realization of the rumor takes certain values, while it would survive when it takes
some other values.

4Angeletos and Werning (2006) explicitly acknowledge the importance of direct interaction between
agents in coordination models. In one extension of their model, agents are allowed to observe a public
signal about the aggregate attack, which conveniently approximates the situation where agents could
learn about the actions of others. We capture the direct interaction between citizens by allowing them
to discover other’s personal judgment through one-to-one private communication.
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2. Related Literature

Our paper builds on the global games literature (Carlsson and van Damme 1993 and
Morris and Shin 1998), which has been applied to analyze issues in political economy.
Among recent examples are Boix and Svolik (2010), Chassang and i Miquel (2010)
and Edmond (2011). In our model, the dispersion in private information is crucial to
generate different assessment on the informativeness of rumors. Information hetero-
geneity provides a ground for the study of communication between citizens, which is
at the core of this paper. We choose to interpret our model in the context of revolution,
but it can also help to understand similar coordination games, such as bank runs and
currency attacks.

Our work is related to a small economics literature on rumors. Banerjee (1993)
develops a model where rumors on investment opportunity are passed on from one
agent to another, but recipients do not necessarily believe those rumors. The proba-
bility that someone hears a rumor is positively related to the number of people who
have heard it. Bommel (2003) studies the effects of rumors on stock prices. Informed
investors with limited trading capacity profit from their private information, and they
also spread rumors (i.e., give informative yet imprecise information to their followers)
so as to profit from stock-price manipulation. Like their models, we also assume that
a rumor heard by citizens cannot be verified, and that citizens use Bayesian updating
in deciding whether to take action or not. Unlike their models, in which a rumor is
passed on to other agents sequentially, we provide a model in a static setting, in which
a rumor is heard by citizens simultaneously. We focus on communication among citi-
zens about the rumor rather than the transmission of the rumor itself.

This paper also contributes to a growing literature on revolutions in economics.
Edmond (2011) considers a coordination game where citizens’ private information
about the regime’s strength is contaminated by the regime’s propaganda. Citizens
understand the signal-jamming technology used by the regime and form their beliefs
accordingly. Our model differs in that private information is uncontaminated, but the
public signal may be false and unrelated to fundamentals. Both Bueno de Mesquita
(2010) and Angeletos and Werning (2006) study coordination games with two stages,
where public signals arise endogenously from the collective action in the first stage.
In our model, the “attack stage” is preceded by a “communication stage,” where a
private message endogenously arises and enlarges citizens’ information set. New de-
velopment of this literature puts emphasis on uncertain payoffs from revolt (Bernhardt
and Shadmehr 2010 and Bueno de Mesquita 2010). Given that our focus is the effect of
rumors and communication, we assume that only the strength of the regime is uncer-
tain.
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In other fields of social sciences, there is no lack of discussions on rumors (e.g., All-
port and Postman 1947) and revolutions (e.g., Goldstone 1994). However there are few
studies on the relationship between these two. The idea seems to have been “up in the
air” that rumors work as a tool to motivate citizens to participate in social movements
such as riots, demonstrations and revolts, but the precise mechanisms remain unspec-
ified, through which the actions taken by citizens are related to the rumors they hear
and talk about. Our model is a step toward formalizing one such mechanism to ex-
plain explicitly how rumors affect citizens’ beliefs, actions, and therefore equilibrium
outcomes in revolutions.

3. A Model of Rumors and Talk about Rumors

3.1. Players and payoffs

Consider a society populated by a unit mass of ex ante identical citizens, indexed by
i ∈ [0, 1], who play against another player, the regime. Citizen i chooses one of two
actions: revolt (ai = 1) or not revolt (ai = 0). The aggregate mass of population that
revolt is denoted A. Nature selects the strength of the regime, θ, which is sometimes
also referred to as the state. The regime survives if and only if θ > A; otherwise it
is overthrown. A citizen’s payoff depends both on whether the regime is overthrown
and on whether the citizen chooses to revolt. A positive cost, c ∈ (0, 1), has to be paid
if she revolts. If the regime is overthrown, citizens who revolt receive a benefit, b = 1,
and those who do not participate receive no benefit.5 A citizen’s net utility is therefore:

u(ai, A, θ) =


1− c, if ai = 1 and A ≥ θ;

−c, if ai = 1 and A < θ;

0, if ai = 0.

3.2. Information structure

Citizens are ex ante identical and have improper prior on θ. They become ex post
heterogeneous after each of them observes a noisy private signal,

xi = θ + εi,

5We abstract from free-riding issues, which has been carefully addressed by Edmond (2011) and
Bernhardt and Shadmehr (2010). The benefits from regime change can be modeled as a public good
that all citizens would enjoy. Edmond (2011) offers a general payoff structure to accommodate this
concern. He shows that a condition can be derived such that citizens still have incentives to act against
the regime, despite the free-riding incentives. To avoid being repetitive and keep the results sharp, we
adopt a simpler payoff structure in this paper, which is a special case of his.
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where the idiosyncratic noise εi ∼ N (0, σ2
x) is normally distributed and independent

of θ, and is independently and identically distributed across i. This assumption cap-
tures the situation that citizens have diverse assessment of the regime’s strength, be-
fore they hear any rumor and communicate. This seemingly standard assumption in
the global games literature turns out to be crucial for our model, for people will not
exchange information in a society where everyone shares the same beliefs.

Our next assumption is that all citizens hear a rumor, z, concerning the strength
of the regime. The key issue that we focus on in this paper is how citizens evaluate
and react to the rumor, when the rumor could be totally uninformative. Towards this
end, the rumor is modeled as a public signal, which could come from two alterna-
tive sources: either a source which offers an informative signal on the strength of the
regime, or a source which only produces uninformative noise. Formally we model the
random variable z as coming from a mixture distribution:

z ∼

I = N (θ, σ2
z ), with probability α;

U = N (s, σ2
U), with probability 1− α,

where I indicates the informative source and U indicates the uninformative source.
The parameters s and σ2

U are the mean and variance of the uninformative distribution,
respectively. The rumor comes from an informative source with prior probability α.
When this is the case, z is normally distributed with mean θ and variance σ2

z . We
assume that α, s, σz, and σU are commonly known to all citizens.

The parameter s can be interpreted as the “sentiment” of the public, which captures
their perception of what uninformative messages would sound like.6 For example, if
the public is used to receiving propaganda materials telling that the regime is strong,
then they may expect a high value of s. Alternatively, sentiments may be driven by
external events: news that would have seemed completely implausible (e.g., Mubarak
leaving the country) could suddenly become plausible when similar news was re-
ported and confirmed in a neighboring country. In this paper, we do not model where
the public’s sentiment s comes from, but we provide comparative statics analysis of
how shifts in s affect equilibrium outcomes (see Section 6.2).

We stress that our specification of rumor as a mixture distribution is different from
an informative public signal with low precision. According to the linear Bayesian
updating formula, all agents would react to an informative public signal in the same
way regardless of their private information. In our specification, however, citizens

6The parsimonious assumption that s is common to all the citizens is made to simplify the exposition.
Allowing them to possess diverse sentiments will be equivalent to adding noise to the uninformative
distribution. Specifically we can assume that U = N (si, σ2

u), where si is individual-specific sentiment
and is distributed across the population according to N (s, σ2

s ). This will not change our results.
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make an inference on how likely the rumor is informative. Since agents with different
private signals have different views regarding what informative news would be like,
they react to the same rumor differently. This mechanism plays a central role in our
paper and cannot be replaced by modeling rumor simply as an informative public
signal with a higher variance.

While not dismissing the relevance of rumormongers, we choose to model rumors
as exogenous public signals in order to focus on their role in coordinating collective
action. The origin and the content of rumors are assumed to be exogenous because of
their sheer diversity and unpredictability. The possibility that rumors are cooked up
strategically to influence individuals’ belief is an important reason that people tend
to be skeptical. But even in this case, the true source of rumors is often shrouded in
obscurity, making it difficult to infer whether they are manufactured to defend the
regime or to destabilize it.7 Moreover, studies on rumors also show that they could
be created unintentionally. For example, misunderstanding between individuals is a
usual source of rumors.8

By modeling rumors as a public signal, we also abstract from the process of how
rumors travel from one to another.9 It is implicitly assumed that rumors could reach
to every citizen in the game.10 This assumption seems to be not unrealistic for many
revolutions in history: rumors against authorities did gain a substantial, even huge,
amount of publicity under very repressive regimes.11

We maintain the following parameter restrictions throughout this paper:

σx < σ2
z
√

2π; (1)

σ2
U > σ2

x + σ2
z ≡ σ2

I . (2)

The first restriction is standard. When α = 1, the model reduces to the standard
7See Knapp (1944), Nkpa (1977), Ley (1997), Grunden, Walker, and Yamazaki (2005), Elias and Scot-

son (1994), and Gambetta (1994) for related analysis. The incentives of rumormongers could be unpre-
dictable in the sense that they might be motivated by many different reasons (Zhang 2009 and Turner,
Pratkanis, Probasco, and Leve 1992).

8See detailed discussion in Allport and Postman (1947), Peterson and Gist (1951), and Buchner
(1965).

9Sociological studies find two types of rumor propagation mechanisms: “snow balling pattern”
(Peterson and Gist 1951) and “simplification pattern” (Allport and Postman 1947 and Buchner 1965).
Modeling the process of diffusion of rumors in a non-reduced form deserves a separate endeavor. For
example, see Acemoglu, Ozdaglar, and ParandehGheibi (2010) for a model where rumors spread in a
network based economy.

10In principal, we could also assume that a certain fraction of citizens do not hear any rumor. This
would not affect the main results in our model.

11The rumor that a college student was killed by the police, which ignited the Velvet Revolution
in Czechoslovakia, was broadcast by Radio Free Europe. The internet offers additional channels for
spreading rumors. In 2009, the Iranian post-election protest intensified after a rumor surfaced in the
internet that police helicopters were pouring acid and boiling water on protesters (Esfandiari 2010).
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Morris-Shin model with public signal. Condition (1) is both sufficient and necessary
for uniqueness of equilibrium in that model; see the discussion in Angeletos and Wern-
ing (2006).

The second restriction captures the idea that uninformative noise exhibits greater
variability than an informative signal. This assumption is justified by the fact that there
are multiple possibilities that can generate an uninformative signal. When a signal is
generated from an informative source, it is based on the true strength of the regime
and its realization is anchored by the truth. When a signal is generated by an uninfor-
mative source, there is great uncertainty concerning where it originates: rumors may
be made up by friends or enemies of the regime, or by people with unknown motives
which are unrelated to regime survival. The possibility that rumors are often the re-
sult of mistakes adds to this uncertainty. In other words, since uninformative noise
is drawn from a distribution which is not anchored by facts or fundamentals, it tends
to be more unpredictable.12 We will show that this assumption is responsible for the
result that citizens tend to discount wild rumors.

3.3. Communication

After citizens observed their private signals and the rumor, they are randomly paired
up to communicate with one another about the informativeness of the rumor. Specif-
ically each citizen in a pair expresses her view on the likelihood that the rumor is
drawn from an informative source, and hears her peer’s view on the same matter. We
assume that such communication is not frictionless: citizens can only convey to their
peers whether they believe the rumor is informative or not in a binary fashion. Let yi

represent the message sent to citizen i by her peer k. The communication technology
is characterized as follows.

yi =

1, if Pr[z ∼ I|z, xk] ≥ δ;

0, if Pr[z ∼ I|z, xk] < δ.
(3)

The threshold δ in this communication technology is common to all citizens and can
be interpreted as a measure of their caution. Citizen k who sends the message yi = 1
to citizen i can be interpreted as saying, “I believe the rumor is informative;” while
the message yi = 0 can be interpreted as “I don’t believe it.” A high value of δ means
that citizens are unlikely to say they believe in the rumor unless they are sufficiently
confident of their assessment. To rule out the possibility that agents will never say
they believe in the rumor, we require an upper bound for the value of δ. Specifically

12Note that heterogeneity in individual sentiment also adds to enlarge the variance of the uninforma-
tive distribution.
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we maintain the following assumption throughout the paper:

δ <
ασ−1

I

ασ−1
I + (1− α)σ−1

U
≡ δ. (4)

The communication rule (3) is non-strategic. Given that it is a game with a contin-
uum of agents, and that each agent only talks to one other agent, there is no incentive
for citizens to strategically manipulate their peers’ belief by lying. In reality, truth-
ful revelation is probably a better description of the casual communication between
acquaintances than is strategic revelation. Our communication rule can be formally
justified if the dominant motive behind such communication is to avoid the expected
cost (e.g., embarrassment) from saying the wrong thing.

Lemma 1. If an agent wants to minimize the expected loss from type 1 and type 2
errors in sending her binary message, then the optimal communication rule is given
by (3).

Two distinct features of our communication rule (3) deserves discussion. The con-
versation between citizens is conducted in a coarsened fashion: the binary message
space captures the coarsening of information in the communication process. This
assumption is intended to capture interesting aspects of reality and to simplify our
analysis. People usually do not fully express, explain and justify their own private as-
sessment by conveying the exact probability. Information coarsening is a cost-effective
way of exchanging casual information, and is commonly used in real life.13

What drives our results is the assumption that people talk about the informative-
ness of the rumor. It is motivated by the fact that rumors, similar to the weather or
celebrities, often constitute a focal point of conversation because it is commonly ob-
served by all. Even though citizens’ assessment of the informativeness of the rumor
depends on their private information, our communication rule is very different from
simply exchanging private signals between citizens. Our communication rule anchors
the content of communication to the realization of the rumor, thus producing inter-
esting interactions between the public rumor and people’s private signals. Section 6.1
will elaborate on this point.

13In Section 6.1, we show that the main insights of our model continue to hold if we allow people to
exchange messages about the exact values of their probability assessment. Section 6.1 also shows that
our results are robust when we relax other simplifying assumptions on communication protocol in the
baseline case.
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3.4. Decision rules

This model can be regarded as a two-stage game. In the communication stage, citizen
i sends a message, yk ∈ {0, 1}, to her peer k based on the information set {z, xi}, and
receives a private message yi ∈ {0, 1} from her peer k. In the attack stage, citizen i
chooses to revolt or not, given the post-communication information set {z, xi, yi}.

In the communication stage, citizens are heterogeneous in only one dimension:
their observed private signal xi. Different people have different beliefs because they
have different expectations of what informative news is like. They follow Bayes’ rule
to update their beliefs:

Pr[z ∼ I|z, xi] =
ασ−1

I φ
(

σ−1
I (z− xi)

)
ασ−1

I φ
(

σ−1
I (z− xi)

)
+ (1− α)σ−1

U φ
(

σ−1
U (z− s)

) ≡ w(z, xi), (5)

where φ is the standard normal density function.

The function w(·, xi) is single-peaked in z. Thus rumors which take extremely high
or low values are not believed by most citizens. This feature is a consequence of our
assumption that the distribution of U has fatter tails than the distribution of I. We also
note that w(z, ·) is symmetric and single-peaked in xi, reaching a maximum at xi = z.
This means that citizens whose private information is consistent with the rumor are
more likely to believe that the rumor is informative.14

Since w(z, ·) is single-peaked in xi and reaches a maximum at xi = z, there exists
x(z) and x(z) such that

w(z, x(z)) = w(z, x(z)) = δ,

provided w(z, z) > δ. Assumption (4) on the upper bound of δ ensures that this condi-
tion is satisfied for any z. A citizen with private information xi between x(z) and x(z)
would have belief w(z, xi) greater than the threshold δ. The communication decision
rule in the communication stage can therefore be written as:

y(z, xi) =

1, if xi ∈ [x(z), x(z)] ;

0, otherwise.
(6)

Finally, note that the symmetry of w(z, ·) about the point xi = z implies that the inter-
val [x(z), x(z)] is centered at z. That is, we can write

x(z) = z− κ(z) and x(z) = z + κ(z),

14See also Gentzkow and Shapiro (2006) and Suen (2010) for models which share the same feature.
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for some κ(z) > 0.

After communication, the information set of citizen i is enlarged by the private
message yi sent by her peer. Let p(θ|z, xi, yi) represent her posterior density function
of θ. In the attack stage, she chooses ai to maximize expected utility,

a(z, xi, yi) = argmax
ai∈{0,1}

{∫ ∞

−∞
u(ai, A(θ, z), θ)p(θ|z, xi, yi)dθ

}
(7)

The aggregate mass of attackers depends on the distribution of private signals xi

and communication messages yi. Given state θ, xi is normally distributed with mean
θ and variance σ2

x . Given the decision rule y(z, xi) specified in equation (6), the prob-
ability that citizen i receives the message yi = 1 is equal to the probability that xk lies
within [x(z), x(z)]. Let J(θ, z) represent this probability conditional on θ and z. Then
the aggregate mass of attackers is given by:

A(θ, z) =
∫ ∞

−∞
[J(θ, z)a(z, xi, 1) + (1− J(θ, z)) a(z, xi, 0)]

1
σx

φ

(
xi − θ

σx

)
dxi, (8)

with
J(θ, z) = Φ

(
x(z)− θ

σx

)
−Φ

(
x(z)− θ

σx

)
, (9)

where Φ is the standard normal distribution function. See Figure 1 for illustration.

z
b

xi

xiθ

x(z)

b

b

x(z)

b

b

J(θ, z)

δ

w(z, xi)

Figure 1. Message sending rule and J(θ, z).

3.5. Equilibrium

To summarize, the timing of events is the following. First, nature selects the strength
of the regime. Then citizens receive private signals and hear a rumor. Afterwards, cit-
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izens are randomly matched in pairs and exchange their views on the informativeness
of the rumor. Based on the updated information set, they choose to revolt or not. The
regime survives or not, hinging on the mass of citizens who revolt.

Definition 1. An equilibrium is a set of posterior beliefs p(θ|z, xi, yi), a message sending
decision y(z, xi), a revolt decision a(z, xi, yi), and a mass of attackers A(θ, z), such that (6),
(7) and (8) hold and the beliefs are derived from Bayes’ rule.

We focus on monotone equilibrium in which, for each realization of the rumor z,
there is a threshold strength of the regime θ∗(z) such that the regime collapses if and
only if θ ≤ θ∗(z). Citizens adopt the following monotonic decision rule:

a(z, xi, yi) =


1, if xi ≤ x∗I (z) and yi = 1,

or xi ≤ x∗U(z) and yi = 0,

0, otherwise;

where x∗I and x∗U are a pair of cut-off rules. The equilibrium ordering of x∗U and x∗I
depends on the realization of z, and is elaborated in Section 5.

In a monotone equilibrium, the cut-off types must be indifferent between attacking
and not attacking. Let P(·|z, xi, yi) be the cumulative distribution corresponding to the
posterior density p(·|z, xi, yi). Then the indifference conditions can be written as:

P(θ∗|z, x∗I , 1) = c, (10)

P(θ∗|z, x∗U, 0) = c. (11)

Let Â(θ, x∗I , x∗U, z) be the mass of attackers when the state is θ and when citizens
adopt the cut-off rules x∗I and x∗U. Then,

Â(θ, x∗I , x∗U, z) = J(θ, z)Φ
(

x∗I − θ

σx

)
+ (1− J(θ, z))Φ

(
x∗U − θ

σx

)
,

where the function J is given by (9). The equilibrium regime survival threshold must
satisfy

Â(θ∗, x∗I , x∗U, z) = θ∗. (12)

A monotone equilibrium can be characterized by the triple (θ∗, x∗I , x∗U) that solves
equations (10), (11), and (12).
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4. Rumors without Communication

Our model departs from the standard global game model in two respects: (1) the pub-
lic signal may be uninformative; and (2) citizens can exchange messages concerning
the informativeness of the public signal. To highlight the effects of these two separate
features, we discuss in this section a model with feature (1) only but without commu-
nication. Such a model can be obtained as a special case of our model by setting δ = 0,
so that the everyone always sends the same message y(z, xi) = 1 and communication
becomes irrelevant. We refer to this special case (i.e., δ = 0) as the “mute model.”
The “communication model” with both features (1) and (2) (i.e., δ > δ > 0) is left for
Section 5.

The ”mute model” nests two important benchmarks: α = 0 and α = 1. When
α = 0, citizens believe that the rumor is completely uninformative. In this case, the
value of z is irrelevant and the model reduces to a standard Morris-Shin model without
public signal. We refer to this as the “pure noise model” and use (θ∗ms, x∗ms) to denote
the equilibrium regime survival threshold and cut-off agent type in this model.

The other important benchmark is the case of α = 1. In this case, the rumor is
known to be informative, and the model reduces to the standard Morris-Shin model
with public signal. We refer to this case as the ”public signal model” and use (θ∗ps, x∗ps)

to denote the equilibrium regime survival threshold and cut-off agent type. Obviously
in this case these equilibrium values depend on the realization of z.

The following result is standard; the proof is relegated to the Technical Appendix.

Proposition 1. In the “pure noise model” (i.e., α = 0), the equilibrium is θ∗ms = 1− c and
x∗ms = (1− c)− σxΦ−1(c). In the “public signal model” (i.e., α = 1), there exists a unique
equilibrium θ∗ps(z) and x∗ps(z) such that:

1. θ∗ps(z) and x∗ps(z) are decreasing in z.

2. (a) limz→∞ θ∗ps(z) = 0 and limz→∞ x∗ps(z) = −∞;
(b) limz→−∞ θ∗ps(z) = 1 and limz→−∞ x∗ps(z) = ∞.

3. There exists a unique z̃ such that θ∗ps(z̃) = θ∗ms and x∗ps(z̃) = x∗ms.

In the “public signal model,” citizen i’s posterior mean of θ upon observing public
signal z is

Xi = βxi + (1− β)z, (13)

where β = σ2
z /(σ2

z + σ2
x) (and the posterior variance is βσ2

x). A lower value of z in-
dicates that the regime is more fragile. Other things equal, this would result in more
agents revolting against the regime (x∗ps increases), making the regime more likely to
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collapse (θ∗ps increases). In the limit, as z becomes very small, almost all citizens would
revolt and the regime with type θ < 1 would collapse almost surely (θ∗ps goes to 1).

Part (1) and part (3) of Proposition 1 imply that θ∗ps(z) > θ∗ms and x∗ps(z) > x∗ms for
all z < z̃. In what follows we say that a rumor is “against the regime” if z < z̃. If z > z̃,
we say that the rumor is “for the regime.”

In the “mute model,” α ∈ (0, 1) and δ = 0, so that citizens are skeptical of rumors
but communication is ineffective. By Bayes’ rule, the posterior belief about θ upon
hearing a rumor z is a mixture of the posterior distribution in the “public signal model”
and that in the “pure noise model,” with weights given by the posterior belief that the
rumor is informative or not. In other words,

P(θ|z, xi) = w(z, xi)Φ

(
θ − Xi√

βσx

)
+ (1− w(z, xi))Φ

(
θ − xi

σx

)
, (14)

where the weight function w(z, xi) is given by (5) and where the posterior mean Xi is
given by (13) of the “public signal model.” The crucial feature of this mixture distri-
bution for θ is that the relative weights are not fixed (even though the mixture distri-
bution for z have fixed weights α and 1− α). Instead the weights depend on both the
content of the rumor and on each citizen’s private information.

Despite the dependence of the weights of the mixture distribution on private infor-
mation, the posterior belief about θ is still stochastically increasing in xi. To see this,
note that the density function of xi given state θ and rumor z is σ−1

x φ(σ−1
x (xi− θ)). For

any θ1 > θ0, the likelihood ratio,

φ(σ−1
x (xi − θ1))

φ(σ−1
x (xi − θ0))

,

is increasing in xi. This monotone likelihood ratio property implies that the posterior
cumulative distribution, P(θ|z, xi), is decreasing in xi (Milgrom 1981). Thus, for any
regime survival threshold θ, the expected payoff from revolt is decreasing in the value
of the private information xi. This justifies our focus on monotone equilibrium.

Let (θ∗m, x∗m) represent the equilibrium regime survival threshold and cut-off agent
type in the “mute model.” The cut-off type must be indifferent between attacking and
not attacking:

P(θ∗m|z, x∗m) = c; (15)

and the mass of attackers in state θ∗m must be equal to the regime survival threshold:

Âm(θ
∗
m, x∗m) = Φ

(
x∗m − θ∗m

σx

)
= θ∗m. (16)
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The following result characterizes the equilibrium θ∗m(z) and compares it with the
counterpart in the benchmark models.

Proposition 2. In the “mute model” (i.e., α ∈ (0, 1) and δ = 0), the equilibrium regime
survival threshold θ∗m(z) satisfies:

1. θ∗m(z̃) = θ∗ps(z̃) = θ∗ms.

2. (a) If the rumor is against the regime (i.e., z < z̃), then θ∗m(z) ∈ (θ∗ms, θ∗ps(z));
(b) if the rumor is for the regime (i.e., z > z̃), then θ∗m(z) ∈ (θ∗ps(z), θ∗ms).

3. limz→−∞ θ∗m(z) = limz→∞ θ∗m(z) = θ∗ms.

4. θ∗m(z) is increasing then decreasing then increasing.

Figure 2(a) illustrates the properties of the equilibrium regime survival threshold
described in this proposition.15 Figure 2(b) shows the qualitative properties of the
equilibrium cut-off agent type. Observe that the properties of x∗m(z) are similar to
those of θ∗m(z). In particular, x∗m(z) is increasing then decreasing then increasing, with
limz→±∞ x∗m(z) = x∗ms. This connection follows from the attack equation (16), which
can be written as:

x∗m(z) = θ∗m(z) + σxΦ−1(θ∗m(z)).

Since x∗m(z) is increasing in θ∗m(z), they share the same qualitative properties as func-
tions of z.

z

θ∗

b

(
z̃, θ̃

)
θ∗ps

θ∗m

θ∗ms

(a) regime survival threshold θ∗(z)
z

x∗

b

(z̃, x̃)

x∗

ps

x∗

m

x∗

ms

(b) cut-off agent type x∗(z)

Figure 2. Comparing the “mute model” with benchmark “pure noise model” and “public signal model”

Interestingly, part (1) of Proposition 2 says that the equilibrium pair (θ∗ms, x∗ms) of
the “pure noise model” also solves the “mute model” when the rumor is neutral (nei-
ther “for the regime” nor “against the regime”), i.e., when z = z̃. Recall that in the

15Unless otherwise specified, we use the following set of parameters as benchmark to compute nu-
merical examples: c = 0.5, s = 0.5, α = 0.5, δ = 0.5, σ2

U = 1, σ2
z = 0.5, and σ2

x = 0.4.
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“pure noise model” an agent with private information x∗ms believes that the regime
will collapse with probability c given regime survival threshold θ∗ms. Given the same
θ∗ms, this agent also believes that the regime will collapse with the same probability
c in the “public signal model” if the public signal is z̃. Thus, for z = z̃, it does not
matter for this agent whether the rumor is informative or not. If the regime survival
threshold is θ∗ms, she believes that the regime will collapse with probability c. Thus
the indifference condition (15) is satisfied. Given that the cut-off agent type is x∗ms at
z = z̃, the threshold θ∗ms satisfies the attack equation (16) as well. Thus (θ∗ms, x∗ms) is an
equilibrium of the “mute model” at z = z̃.

In this model, citizens are skeptical of the rumor, i.e., they take into account the
possibility that the rumor could just provide a noise. The degree of skepticism is char-
acterized by the weight given to the rumor being informative. The effect of skepti-
cism manifests itself in the fact that the equilibrium regime survival threshold is less
sensitive to changes in z around z̃ than it is in the “public signal model,” and more
responsive than in the “pure noise model.” Specifically,

0 =
dθ∗ms
dz

>
dθ∗m(z̃)

dz
>

dθ∗ps(z̃)
dz

, (17)

which is implied by part (2) of Proposition 2.

To understand why (17) holds, let x̂(θ, z) be defined as the cut-off agent type who
is indifferent between attacking and not attacking if the regime survival threshold is
θ and the rumor realization is z. In the “mute model,” as well as in the benchmark
models, the response of equilibrium threshold to a change in the realization of the
rumor can be calculated by,

dθ∗(z̃)
dz

=
1
σx

φ(·) ∂x̂
∂z

1− 1
σx

φ(·)
(
−1 + ∂x̂

∂θ

) , (18)

where φ(·) is evaluated at the equilibrium value of (x∗− θ∗)/σx of the relevant model.
The effect of rumor on the equilibrium regime survival threshold can be decomposed
into two components. At z = z̃, a small decrease in the value of z means that the
regime is relatively weaker. In order to keep the expected payoff from attacking fixed,
the cut-off agent type x̂ must have a higher value of private information to compensate
for the lower value of z. This direct effect tends to raise the mass of attackers because
∂x̂/∂z < 0. It is reflected in the numerator of (18). Furthermore, as more people
attack the regime and the regime survival threshold rises, the payoff from attacking
also rises, which raises x̂ further, that is, ∂x̂/∂θ > 0. This multiplier effect is reflected
in the denominator of (18).
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When z = z̃, the equilibrium values of θ∗ and x∗ are the same across the three
models. Therefore, in equation (18), the term φ(·) does not depend on the model being
considered. The critical factors in determining the magnitude of dθ∗/dz are ∂x̂/∂z and
∂x̂/∂θ, which correspond to the direct and multiplier effects. At z = z̃, we have:

∂x̂ms

∂θ
= 1 <

∂x̂m

∂θ
=

w + (1− w)
√

β

wβ + (1− w)
√

β
<

∂x̂ps

∂θ
=

1
β

. (19)

We label this ordering the “skepticism effect,” because it is driven by the fact that the
weight w attached to the rumor being informative is between 0 and 1. Further, at z = z̃,
∂x̂/∂z + ∂x̂/∂θ = 1 for all the three models. Therefore, (19) implies:

0 =
∂x̂ms

∂z
>

∂x̂m

∂z
>

∂x̂ps

∂z
.

The comparison of dθ∗m(z̃)/dz with the counterparts in the benchmark models given
in (17) then follows immediately.

The comparison in (17) shows that, at the point z = z̃ the sensitivity of equilibrium
outcome to the rumor in the “mute model” is between that in the “pure noise model”
and in the “public signal model.” More generally, part (2) of Proposition 2 states that
the value of θ∗m(z) is always between θ∗ms and θ∗ps(z) for any z. This, however, does not
mean that the “mute model” is simply a “public signal model” with a noisier public
signal.

Part (4) of Proposition 2 states that θ∗m(z) is non-monotone, while Proposition 1
states that θ∗ps(z) is monotonically decreasing (regardless of the precision of the public
signal). Note that from equation (14),

∂P(θ∗m|z, xi)

∂z
= −w

β√
βσx

φI + (ΦI −ΦU)
∂w
∂z

,

where the subscripts I and U means that the functions are evaluated at the points
(θ∗m − Xi)/(

√
βσx) and (θ∗m − xi)/σx, respectively. If the rumor is informative, an in-

crease in z is indication that the regime is strong, which lowers the probability that
the regime will collapse. Hence the first term is negative. However, since w(z, xi) is
single-peaked in z, ∂w/∂z < 0 for z sufficiently large, reflecting greater skepticism
toward the rumor when it moves farther away from the agent’s private signal. When
the rumor is for the regime, the probability that the regime will collapse is lower if
the rumor is informative than if it is uninformative; that is, ΦI < ΦU. Therefore the
second term is positive for z sufficiently large. Moreover, the magnitude of the first
term is small for z sufficiently large. When the second term dominates the first term,
an increase in the value of z actually increases agents’ assessment of the likelihood that
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the regime would collapse. As a result, the marginal agent who is indifferent between
attacking and not attacking must have a higher private information about the strength
of the regime. In other words, ∂x̂m/∂z > 0 for z large, which implies dθ∗m(z)/dz > 0
by equation (18).

On the other hand, when z = z̃, we have ΦI = ΦU because it does not matter to
the cut-off type agent whether the rumor is informative or not. For values of z close
to z̃, the magnitude of ΦI − ΦU is small, and the first effect dominates. In this case,
∂x̂m/∂z < 0, which implies dθ∗m(z)/dz < 0. This explains the non-monotonicity of
θ∗m(z).

The non-monotonicity result also explains why the limit behavior of the “mute
model” is qualitatively different from that of the “public signal model.” When the ru-
mor is extreme, i.e., z→ −∞ or +∞, the probability that it comes from an informative
source goes to 0. As a result, people disregard the rumor and the equilibrium is identi-
cal to that in the “pure noise” case: θ∗m(z) goes to θ∗ms and x∗m(z) goes to x∗ms. In contrast,
in the “public signal model”, the equilibrium threshold monotonically deceases from
1 to 0 as z goes from −∞ to ∞.

5. Rumors with Communication

In this section, we focus on the “communication model,” with δ ∈ (0, δ) and α ∈ (0, 1).
In this model, citizens are still skeptical of the rumor they hear, but are allowed to com-
municate with one another about its informativeness. We show that communication
could overcome the effect of skepticism and spark a sharp reaction among citizens.
More surprisingly, a rumor against the regime could be more effective in mobilization
than a negative trustworthy news that all citizens fully believe to be informative.

5.1. Posterior Beliefs

By Bayes’ rule, agent i who receives the message yi = 1 from her peer revises her belief
about the state to:

P(θ|z, xi, 1) =

∫ θ
−∞ J(t, z)p(t|z, xi)dt∫ ∞
−∞ J(t, z)p(t|z, xi)dt

.

where p(·|z, xi) is the density associated with the belief P(·|z, xi) in the “mute model”
given by equation (14), and where J(t, z) is the probability that a randomly selected
agent would send a message to her peer that confirms the rumor z in state t, as given
by equation (9). The denominator is equal to Pr[yi = 1|z, xi], that is, the probability
that agent i expects to receive yi = 1 from her peer. Note that Pr[yi = 1|z, xi] =

E[J(t, z)|z, xi]. The term J(t, z) is increasing then decreasing in t, with a peak at t = z.
Therefore, J(t, z)/ Pr[yi = 1|z, xi] is higher than 1 when the state t is close to z, and is
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lower than 1 when t is far away from z. In other words, upon receiving the message
yi = 1, the posterior density becomes more concentrated around the rumor z than its
counterpart in the “mute model.” Similarly, agent i who receives the message yi = 0
revises her belief to:

P(θ|z, xi, 0) =

∫ θ
−∞(1− J(t, z))p(t|z, xi)dt∫ ∞
−∞(1− J(t, z))p(t|z, xi)dt

.

Let x̂I(θ, z) be the value of xi that solves P(θ|z, xi, 1) = c. That is, an agent with
private information x̂I is indifferent between attacking or not attacking if the regime
survival threshold is θ, the rumor realization is z, and the peer’s message is that she
“believes the rumor.” Similarly, let x̂U(θ, z) be the value of xi that solves P(θ|z, xi, 0) =
c. Denote θ∗(z) to be the equilibrium regime survival threshold when the rumor is z.
The equilibrium cut-off types are x∗I (z) = x̂I(θ

∗(z), z) and x∗U(z) = x̂U(θ
∗(z), z).

5.2. Extreme and Neutral Rumors

Proposition 3. In the “communication model” (i.e., α ∈ (0, 1) and δ ∈ (0, δ)), the equilib-
rium triple (θ∗, x∗I , x∗U) has the following properties:

1. limz→±∞ θ∗(z) = θ∗ms, limz→±∞ x∗U(z) = x∗ms, and limz→±∞ x∗I (z) = ∓∞.

2. There exists a z′ such that θ∗(z′) = θ∗m(z′) and x∗I (z
′) = x∗U(z

′) = x∗m(z′).

3. If c = 0.5, then z′ = z̃ and θ∗(z′) = θ∗m(z′) = θ∗ps(z′) = θ∗ms. Furthermore, x∗I (z) >
x∗U(z) for all z < z′ and x∗I (z) < x∗U(z) for all z > z′.

The limit behavior of the “communication model” is summarized in part (1). When
the rumor takes extreme values, almost everyone says “I don’t believe it” (because the
limit of J(θ, z) is 0 for any finite θ). The skepticism of an agent (captured by the fact
that the limit of w(z, xi) is 0) is reinforced by the skepticism of her peer. This explains
why θ∗ and x∗U are the same as those in the “pure noise model.”

The limit behavior of x∗I , however, is qualitatively different. If the rumor indicates
that the regime is very weak, an agent i is extremely unlikely to receive a confirma-
tory message from her peer. But in the unlikely event that she does, such an extreme
event will overcome her initial skepticism toward the rumor to the extent that, for any
finite value of xi, she becomes almost sure that the regime will collapse. Therefore,
in equilibrium, the cutoff type x∗I (z) must increase without bound as z becomes very
low, meaning that almost anyone who hears a confirmatory message about an extreme
rumor against the regime will revolt.
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Part (1) of Proposition 3 immediately implies, via the intermediate value theorem,
that there exists z′ such that x∗I (z

′) = x∗U(z
′) = x′. Part (2) of the proposition says that

such an x′ turns out to be equal to x∗m(z′) of the “mute model.” To see why this is true,
observe that an agent’s decision to revolt does not depend on what her peer says when
x∗I = x∗U. At z′, therefore, the “communication model” is observationally equivalent to
the “mute model”: the mass of attackers is always the same in both models, regardless
of the realization of θ.

Interestingly, we find that z′ coincides with z̃ in the case where c = 0.5. This means
that rumors for which cut-off type citizens do not care about what their peers say
(y = 1 or y = 0) are also rumors for which they do not care about from which source
the rumor is drawn (z ∼ I or z ∼ U). This special case offers analytical convenience
and tractability, since equilibrium thresholds are the same across all the four models
when z = z′ = z̃. We study the role played by communication in the “communication
model” by letting z deviate from z′ and comparing the equilibrium results with the
other three benchmarks.16 Therefore, in the remaining analysis, we focus on this case.

5.3. Swing Population

In a monotone equilibrium, there are three possible cases for the ordering of the cut-
off types: x∗I > x∗U, x∗I < x∗U, or x∗I = x∗U. Suppose x∗I > x∗U. Then, citizens with
private information xi < x∗U attack the regime regardless of the message they receive.
We label this group of citizens revolutionaries. Similarly, citizens with private informa-
tion xi > x∗I would not revolt regardless. This group of citizens is labeled bystanders.
Citizens with xi ∈ [x∗U, x∗I ] choose to revolt if they receive yi = 1 from their peers, and
not to revolt otherwise. Essentially, this group of citizens’ revolt decisions are influ-
enced by their peers’ assessment of the rumor. We call this group the swing population.
See Figure 3. The equilibrium ordering of x∗I (z) and x∗U(z) depends on z. Part (3) of
Proposition 3 establishes that x∗I (z) > x∗U(z) for all z < z′. The opposite is true if
z > z′.

When z < z′, a citizen from the swing population attacks the regime when she re-
ceives a message that confirms the rumor and does not attack otherwise. It is straight-
forward to show that P(θ∗(z)|z, xi, 1) > c > P(θ∗(z)|z, xi, 0) in this case. Intuitively, if
the rumor says the regime is weak, anyone from the swing population finds that the
expected payoff of attacking is higher than c when receiving a confirmatory message,

16It is difficult to directly compare θ∗(z), θ∗m(z) and θ∗ps(z) because none of these equilibrium values
admit a closed-form solution. Our approach is to evaluate these functions at the point z = z′ = z̃ and
then compare their derivatives at that point. Since the equilibrium thresholds in all the different models
are the same at z = z′ = z̃, comparing the derivatives at that point allows us to make conclusions about
the levels of these functions for values of z near z′. Qualitatively, our conclusions still hold when z′ 6= z̃.
The value of participation cost c does not affect the properties of equilibrium.
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Figure 3. An example of population distribution: revolutionaries, swing population and bystanders,
when x∗U < x∗I .

but is lower than c when the rumor is not confirmed by her peer.

5.4. The Communication Effect

We have explained that in the “mute model,” two effects arise when z deviates from z′.
The direct effect comes from the fact that a lower z has to be compensated by a higher
realization of the private signal to keep the cut-off type indifferent. The magnitude
of the direct effect depends on the magnitude of ∂x̂m/∂z. The multiplier effect comes
from the fact that any increase in the regime survival threshold would increase the
payoff from revolting and hence further raise the cut-off type. The magnitude of the
multiplier effect depends on ∂x̂m/∂θ. To compare the “communication model” with
the “mute model,” the first step is to study the effects of introducing communication
on the magnitude of the direct and multiplier effects.

Lemma 2. At z = z′ = z̃ and θ = θ′, the cut-off types who are indifferent between
attacking and not attacking satisfy:

∂x̂I

∂θ
>

∂x̂m

∂θ
>

∂x̂U

∂θ
> 0, (20)

∂x̂I

∂z
<

∂x̂m

∂z
<

∂x̂U

∂z
< 0. (21)

Lemma 2 states that the sensitivity of the cut-off type to changes in the regime
survival threshold and to the rumor depends on the content of the communication,
with citizens who receive yi = 1 being more sensitive than citizens who receive yi = 0,
and with citizens in the “mute model” being in between. We label this ordering the
“communication effect.”

To understand the intuition behind Lemma 2, take the ordering of ∂x̂/∂θ (multi-
plier effect) first. Note that when z′ = z̃, we also have z′ = θ′. With a confirmatory
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message that her peer believes the rumor z′ is informative, a citizen would assign a
higher probability weight (density) to those possible realizations of the state that are
close to θ′. In particular, the posterior densities of the “communication model” and
the “mute model” satisfy:

p(θ′|z′, x′, 1)
p(θ′|z′, x′)

=
J(θ′, z′)

Pr[yi = 1|z′, x′]
> 1,

since J(θ, z′) reaches a maximum at θ = θ′ = z′ and the denominator is just the ex-
pected value of J(θ, z′). The value of p(θ′|z′, x′, 1) gives the marginal increase in pay-
off from attacking for the cut-off type who receives a confirmatory message when the
regime survival threshold is raised slightly above θ′. Since p(θ′|z′, x′, 1) > p(θ′|z′, x′),
this means that raising the regime survival threshold increases the incentive to attack
by a greater amount for citizens who receive a confirmatory message than for citizens
who receive no message in the “mute model.” As a result, x̂I also has to increase by a
greater amount than x̂m does to keep both cut-off types indifferent.

Next, consider the ordering of ∂x̂/∂z (direct effect). As we have shown, a confirma-
tory message (yi = 1) leads to a more concentrated posterior density for states around
θ = z′. This posterior distribution is more responsive to changes in the rumor than its
counterpart in the “mute model.” See Figure 4 for an illustration. The same increase
in the value of z shifts the density function p(·|z, xi, 1) to the right by a greater amount
than it does to the density function p(·|z, xi). In other words, a citizen who receives
yi = 1 relies more on the rumor because it is confirmed by her peer. That explains
why x̂I has to decrease by a larger amount than x̂m in order to balance the indifference
condition, in response to the same amount of change in z.

θ

p(·)

p(θ|z′, x′, y = 1)

p(θ|z′′, x′, y = 1)

p(θ|z′, x′)

p(θ|z′′, x′)

b

x′ = z′

b

z′′

Figure 4. Posterior density in the “communication model” and the “mute model.” When z = z′, both
densities are symmetric around z′. When z′′ > z′, the density function in the “communication model”
(for the case y = 1) shifts by a greater amount than does density function in the “mute model.”

23



5.5. The Power of Whispers

The following proposition establishes another key result: when the rumor is close to
neutral, the equilibrium regime survival threshold is more sensitive to the rumor un-
der the “communication model” than under the “mute model.” In other words, when
the rumor z is against the regime and is sufficiently close to z′, a regime with strength
θ ∈ (θ∗m(z), θ∗(z)) would collapse if communication among citizens is allowed, but
would survive if it is not.

Proposition 4. For z near z′ (which equals z̃), a small change in the rumor causes a bigger
change in equilibrium regime survival threshold under the “communication model” than under
the “mute model,” i.e.,

dθ∗(z′)
dz

<
dθ∗m(z′)

dz
< 0, (22)

Figures 5(a) and 5(b) present the equilibrium thresholds θ∗ and the equilibrium cut-
off rules x∗ for the four models. Around z′, the equilibrium θ∗ in the “communication
model” is steeper than that in the “mute model,” as is described in Proposition 4.

z

θ∗

z′

b

θ∗

θ∗m

θ∗ps

θ∗ms

(a) regime survival thresholds

z

x∗

b

z′

x∗
I

x∗
U

x∗
m

x∗
ps

(b) cut-off agent types

Figure 5. Equilibrium regime survival thresholds and equilibrium cut-off agent types in the “commu-
nication model” in comparison to other models

The size of dθ∗/dz is determined by the magnitude of the direct and multiplier ef-
fects. Using the fact that x̂I(θ

′, z′) = x̂U(θ
′, z′), we can differentiate the attack equation

(12) to obtain:

dθ∗(z′)
dz

=

1
σx

φ(·)
(

J ∂x̂I
∂z + (1− J) ∂x̂U

∂z

)
1− 1

σx
φ(·)

(
−1 + J ∂x̂I

∂θ + (1− J) ∂x̂U
∂θ

) , (23)

where φ(·) is evaluated at the point (x′ − θ′)/σx. Comparing (23) with its counterpart
(18) for the “mute model,” we obtain Proposition 4 by showing in the proof that, at the
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point θ = θ′ and z = z′,

J
∂x̂I

∂θ
+ (1− J)

∂x̂U

∂θ
>

∂x̂m

∂θ
> 1; (24)

J
∂x̂I

∂z
+ (1− J)

∂x̂U

∂z
<

∂x̂m

∂z
< 0. (25)

The direct effect of an increase in z on the mass of attackers is the weighted aver-
age of ∂x̂I/∂z and ∂x̂U/∂z, with the weights being J and 1− J, respectively. By (25),
this effect is larger in magnitude with communication than without. The multiplier
effect—the effect of an increase in regime survival threshold on the mass of attackers—
is determined by the weighted average of ∂x̂I/∂θ and ∂x̂U/∂θ. By (24), this effect is
also larger in magnitude with communication than without. These two effects com-
bine to give a greater sensitivity of the equilibrium survival threshold to the rumor.

When the true state of nature is θ = θ′, the mass of attackers is equal to the
equilibrium regime survival threshold. Therefore, Proposition 4 also implies that
the mass of attackers in state θ = θ′ is more responsive to the rumor in the “com-
munication model” than in the “mute model.” In the “communication model,” a
slight decrease in z from z′ leads to an increase in the size of swing population by
σ−1

x φ(·)(dx∗I /dz − dx∗U/dz). A fraction J of the swing population would receive a
confirmatory message from their peers and attack the regime. The change in the mass
of revolutionaries is σ−1

x φ(·)dx∗U/dz. In the “mute model,” the increase in the mass of
attackers is σ−1

x φ(·)dx∗m/dz. At z = z′, we must have

1
σx

φ(·)
[

J(θ′, z′)
(

dx∗I
dz
−

dx∗U
dz

)
+

dx∗U
dz

]
<

1
σx

φ(·)dx∗m
dz

< 0.

To illustrate, we plot the mass of attackers Â(θ) against the state θ, holding the
cut-off rules constant. The equilibrium regime survival threshold is given by the in-
tersection of Â(θ) and the 45-degree line. For values of z slightly below z′, Figure 6(a)
shows that a larger fraction of attackers are mobilized than that in the “mute model”
when the regime strength θ is near z. Note that communication does not necessarily
increase the mass of attackers at all states and it actually lowers the mass of attackers
when θ is far from z.

Communication allows citizens on the whole to be better informed about the true
state whenever the true state is near what is suggested by the rumor. Because the func-
tion J(θ, z) peaks at θ = z, more citizens will hear a confirmatory message when the
true regime strength θ is close to the rumor z. If the rumor suggests that the regime is
weak, this mechanism causes more people to attack when the regime is indeed weak
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Â(θ)

45◦

b

b

b

z

θ∗ θ∗m
0

1.0
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Figure 6. Mass of attackers in different states in the “mute model” and in the “communication model”

and close to what the rumor indicates. This explains why Â(θ′) is higher in the “com-
munication model” than that in the “mute model” at values of θ close to z, or why
θ∗(z) > θ∗m(z) for z slightly lower than z′.

For the same reason, the ordering of θ∗(z) and θ∗m(z) may be reversed for z much
below z′. This is illustrated in Figure 6(b). When the true regime strength θ is much
higher than what the rumor z suggests, J(θ, z) will be small and many citizens will
hear that their peers do not believe the rumor. In this case, communication coordinates
citizens not to attack. Figure 6(b) shows that the mass of attackers falls relative to that
in the “mute model” when regime is indeed strong and far away from what the rumor
suggests.

5.6. Rumors vs. Trustworthy News

In Section 4, we have shown that, due to citizens’ skepticism toward rumors, the mag-
nitude of the response of θ∗m to a change in z is smaller in the “mute model” than that
in the “public signal model” at z = z′. In the previous subsection, we establish that
the effect of skepticism can be, to a certain extent, undone by communication, so that
θ∗ is more sensitive than θ∗m is to changes in z around z′.

Interestingly, the effect of communication can be so large that θ∗ in the “communi-
cation model” is more sensitive to the rumor than is its counterpart θ∗ps in the “public
signal model.” In other words, when a rumor against the regime is heard by citizens
who are allowed to communicate about its informativeness, the regime could survive
when all agents believe that the rumor is trustworthy, but could collapse when citizens
know that the rumor may be uninformative. Specifically, the slope of equilibrium θ∗

can be steeper than θ∗ps at z = z′, so that the regime survival threshold θ∗ can be higher
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Figure 7. Comparing the “communication model” to the “public signal model” when private informa-
tion has reasonably high precision

than θ∗ps for z slightly below z′. Figure 7 shows such a possibility.17

To understand why this possibility could arise, recall that the sensitivity of θ∗ to a
change in z around z′ is governed by the magnitude of the direct effect and the mul-
tiplier effect. Further, since these two effects sum to a constant, we may just focus on
the multiplier effect, i.e., ∂x̂/∂θ. It is shown in equation (19) that, due to the skepticism
effect, i.e., w(z′, x̂m) < 1, we have

∂x̂ps

∂θ
>

∂x̂m

∂θ
.

It is also shown in equation (20) that, due to the the effect of communication, i.e.,
J(θ′, z′)/ Pr[yi = 1|z′, x′] > 1, we have

∂x̂I

∂θ
>

∂x̂m

∂θ
.

When the communication effect is large enough, the effect of skepticism can be over-
come such that the following holds,

∂x̂I

∂θ
>

∂x̂ps

∂θ
.

Moreover, the fraction of population who receive y = 1 can be so large that the average
response of the population is larger than its counterpart in the “public signal model”.
That is,

J(θ′, z′)
∂x̂I

∂θ
+ (1− J(θ′, z′))

∂x̂U

∂θ
>

∂x̂ps

∂θ
. (26)

Using the same logic as in Proposition 3, this inequality leads to the situation shown
in Figure 7, that is,

dθ∗(z′)
dz

<
dθ∗ps(z′)

dz
< 0.

17In plotting this figure, we use the value of σ2
x = 0.2, which is lower than that used in Figure 5(a).
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It is interesting to investigate under what conditions inequality (26) could hold.
Toward this end, we study how the multiplier effect changes in each model as the
variance of private information increases.

With less precise private signals, citizens in the “public signal model” are more
responsive to the public information. Specifically the weight given to private infor-
mation in the standard linear Bayesian updating formula is β. The value of ∂x̂ps/∂θ is
equal to 1/β, which increases in σ2

x ; see the dashed line Figure 8.

1

1.5

2.0

0 0.5

σ2

x

∂x̂
∂θ

J
∂x̂I
∂θ

+ (1 − J)
∂x̂U
∂θ

∂x̂m
∂θ

∂x̂ps
∂θ

Figure 8. The magnitude of the multiplier effect in different models as functions of the variance of
private information.

Similarly, ∂x̂m/∂θ increases in σ2
x because a less precise private signal implies a

smaller weight given to the private signal; see the dotted line in Figure 8. The widen-
ing gap between ∂x̂m/∂θ and ∂x̂ps/∂θ reflects the effect of skepticism, since an increase
in σ2

x reduces the weight w(z′, x′) that citizens attach to the rumor being informative.
In other words, when the precision of private information decreases, skepticism be-
comes stronger, which further dampens citizens’ response to public information.

In the “communication model,” an increase in σ2
x raises both ∂x̂I/∂θ and ∂x̂U/∂θ,

partially due to the decrease in β. More importantly, the difference ∂x̂I/∂θ − ∂x̂ps/∂θ

increases with σ2
x . This reflects the effect of communication, since an increase in σ2

x

raises J(θ′, z′)/ Pr[yi = 0|z′, x′].

For σ2
x close to 0, ∂x̂ps/∂θ > ∂x̂I/∂θ. In other words, the communication effect

is dominated by skepticism. When σ2
x is sufficiently small, the fraction of population

receiving confirmatory message approaches 1. Intuitively, if everybody is expected
to send y = 1, then this message does not reveal much new information and takes
little effect when one receives it. Therefore, the weighted average in concern in the
“communication model,” must be lower than that in the “public signal model.”

When σ2
x is big, the communication effect could dominate skepticism, i.e., ∂x̂I/∂θ >

∂x̂ps/∂θ. Intuitively, when citizens are very skeptical of the rumor, it is unlikely to
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receive y = 1. Therefore, receiving such a confirmatory message can take a stronger
effect.18

However, as σ2
x increases, less weight is attached to the larger value ∂x̂I/∂θ be-

cause J falls. These two opposing effects account for the hump shape of J∂x̂I/∂θ +

(1− J)∂x̂U/∂θ shown by the solid curve in Figure 8. For very small or very large val-
ues of σ2

x , this curve is close to ∂x̂m/∂θ, and is always above it by equation (24). For
intermediate values of σ2

x , the effect of communication could be so large that inequality
(26) holds.

The hump-shaped response is novel. It means that an increase in precision of
private information can lead to a stronger reaction to public information, as in the
downward-sloping part of the solid curve in Figure 8. In other words, citizens as a
whole act as if they were more responsive to the rumor when their private informa-
tion is more precise, which is opposite to what the standard linear Bayes’ updating
formula predicts. In this “communication model,” public and private information can
be either substitutes and complements, depending on the level of private information
precision.19

6. Discussion

6.1. Mechanisms and Robustness

In the baseline model, we have assumed that communication takes the form of ex-
changing coarse (binary) signals about the informativeness of the rumor. In this sub-
section, we demonstrate that coarsening is not crucial for our results, although it sim-
plifies the analysis and captures realistic features of information exchange among indi-
viduals. We show that it is the exchange of assessment of the rumor’s informativeness
which drives our results, and that this mechanism is qualitatively different from the
case where the content of communication is unrelated to the rumor. To stress this
point, we explore two alternative communication protocols, which allow citizens to
exchange the exact value of w(z, xi), or the exact value of xi.

Specifically, suppose citizens can tell each other the value of w (instead of just
whether w is greater than or less than δ). Citizens i updates her belief in a Bayesian

18In this case receiving a contradictory message, y = 0, takes little effect. That is, ∂x̂U/∂θ is lower
than but very close to ∂x̂m/∂θ.

19The complementarity between public and private information has been recently discovered in some
learning models (Duffie, Malamud, and Manso 2010 and Veldkamp 2011). Our mechanism differs from
previous work in that the complementarity is a result of changes in the size of different groups who
receive different messages when communication is allowed.
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fashion when she receives the message wk = w(z, xk) from her peer k:

P(θ|z, xi, wk) =

∫ θ
−∞ j(t, z, wk)p(t|z, xi)dt∫ ∞
−∞ j(t, z, wk)p(t|z, xi)dt

,

where
j(t, z, wk) =

1
σx

φ

(
xl − t

σx

)
+

1
σx

φ

(
xr − t

σx

)
,

with xl and xr being the two solutions to the equation w(z, xk) = wk.

The function j(t, z, wk) reaches a local maximum at t = z if wk is high (xl and xr are
near z), or a local minimum at t = z if wk is low (xl and xr are far from z). Moreover,
at z = z′, there exists a ŵ such that the ratio, j(θ′, z′, wk)/

∫ ∞
−∞ j(t, z′, wk)p(t|z′, x′)dt,

is greater than 1 if wk > ŵ. Therefore, citizens who receive a message wk > ŵ in this
model are similar to citizens who receive a message y = 1 in the baseline model, with
J(θ′, z′)/ Pr[y = 1|z′, x′] > 1 that gives rise to the communication effect. Similarly,
the ratio j(θ′, z′, wk)/

∫ ∞
−∞ j(t, z′, wk)p(t|z′, x′)dt is less than 1 if wk < ŵ. Therefore,

citizens who receive a message wk < ŵ in this model are similar to citizens who receive
a message y = 0 in the baseline model, with (1− J(θ′, z′))/ Pr[y = 0|z′, x′] < 1.

Intuitively, when citizen k conveys a high assessment that the rumor is likely to be
informative, i.e., wk > ŵ, her peer i assigns a higher probability weight (density) to
states close to z. Similarly, when citizen k does not believe the rumor is sufficiently
informative, i.e., wk < ŵ, citizen i assigns lower weight to states close to z and higher
weight to states far away from z. Given that this probability re-weighting is the key
mechanism that drives our results in the baseline case, a model of exchanging the exact
probability assessments of the rumor’s informativeness is not qualitatively different
from a model of exchanging coarse information about these assessments.

Now we turn to the case where citizens directly exchange their private information
concerning the strength of the regime. To be more general, we allow the communica-
tion process to be noisy: each citizen receives her peer’s private signal with an additive
noise. That is, the message yi received by the citizen i from her peer k is given by:

yi = xk + ξk,

where the noise ξk ∼ N (0, σ2
ξ ) is normally distributed and independent across k. At

the end of communication stage, each citizen possesses an information set which con-
sists of the rumor z and two private signals xi and yi of different qualities. This infor-
mation set is equivalent to (z, xyi), where xyi is a private signal with higher precision
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than xi. That is,

xyi ≡
σ2

x + σ2
ξ

2σ2
x + σ2

ξ

xi +
σ2

x

2σ2
x + σ2

ξ

yi,

σ2
xy ≡

σ2
x + σ2

ξ

2σ2
x + σ2

ξ

σ2
x < σ2

x .

In other words, this setting is observationally equivalent to the “mute model,” with
private signals of a higher quality. An increase in the precision of private information
causes citizens to be less responsive to the rumor in the “mute model.” The resulting
change in equilibrium thresholds is shown in Figure 9, which presents the equilibrium
survival threshold in the “communication model,” the “mute model,” and the model
with the modified assumption concerning the exchange of private signals (labeled θ∗ex).
The same set of parameters is used throughout these examples; the only difference is
the communication protocol.20

z

θ∗

b

θ∗

θ∗m
θ∗ex

Figure 9. Equilibrium survival threshold for regime strength is less response to rumors when citizens
communicate with one another about their private signals.

The contrast between these two alternative models highlights that the mode of
communication matters: when we allow citizens to exchange what they privately
know, they rely more on private information; when we allow them to exchange views
on the public signal that they commonly observe, they rely more on public siganl.21

Our baseline specification on communication is the simplest possible one that al-
lows citizens to exchange views on the informativeness of the rumor. We can relax

20The same conclusion still holds if we consider a model in which citizens exchange coarsened infor-
mation about their private signals by sending the message y = 1 if x > x, or y = 0 if x ≤ x, for some
cutoff value x.

21We can also have a hybrid model by allowing citizen i to exchange private information with a ran-
dom peer k and then randomly meet another citizen k′ to exchange views on informativeness of the
rumor. Interestingly, given the result in Section 5.6 (see Figure 8), more precise private information aris-
ing from the exchange of private information does not necessarily undermine citizens’ overall response
to the rumor.

31



various simplifying assumptions without changing the main results of our analysis.
For example, in the benchmark model, we assume that every citizen talks about the
rumor and communicates truthfully without any error. If citizens meet one another
with probability q < 1 or mis-communicate with a small probability µ < 0.5 (i.e., mis-
takenly send a confirmatory message when a contradictory message is intended, or
vice versa), then the effect of communication increases in q and decreases in µ.

We also investigate a specification where finer messages are exchanged between
citizens. We allow citizens to justify and explain why they do not believe the rumor is
informative if they send a contradictory message. Specifically, citizen k can send her
peer a message y = 0L, interpreted to mean “the rumor is not informative because
it indicates that the regime is too much stronger than I believe,” when xk < x(z);
she sends y = 0R when xk > x(z); and she sends y = 1 when xk ∈ [x(z), x(z)]. In
the baseline model, the key mechanism, which leads to the result that rumors can be
even more powerful than trustworthy news, is that the effect of communication could
dominate skepticism when y = 1 is received, i.e., ∂xI/∂θ > ∂xps/∂θ, and the fraction
of population who receives y = 1, i.e., J(θ′, z′), can be sufficiently large. The same
driving force could also dominate in this specification and lead to a similar result.

6.2. Sentiment

We interpret the mean of the uninformative distribution as sentiment, i.e., the public’s
perception of what uninformative messages would sound like. Given that the unin-
formative distribution U has a density that peaks at z = s, the probability that the
rumor is informative decreases in the distance between z and s. If a rumor is close to
what the public perceives as untrustworthy information, it will be given less credibility
by citizens. Therefore, sentiment critically affects citizens’ evaluation of the rumor’s
informativeness. For example, if citizens have lived with systematic government pro-
paganda for a long time, any claims about its alleged strength would be considered
less credible.

Suppose s = z′. We call this value “neutral sentiment,” since the equilibrium
regime survival threshold is symmetric in s about the point s = z′. If s is exogenous
decreased from the neutral value, then for any z > z′, θ∗(z) goes down, indicating that
the regime is more likely to survive. The key intuition is that when s is low, citizens
believe that a rumor in favor of the regime (z > z′) is likely to have come from an
informative source. As a result, they believe the regime is strong and are therefore less
prepared to attack. When the rumor is against the regime (z < z′), citizens tend to
attribute the rumor to an uninformative source. Because they do not believe that the
regime is weak, they are again less likely to attack. Similar analysis shows the oppo-
site happens when s increases exogenously from the neutral level. See the left panel of
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Figure 10 for an illustration of these two cases.

The right panel of Figure 10 shows the ex ante survival probability for each θ,
which is computed by integrating over z using the mixture distribution. When s is
exogenously shifted up, it is less likely for the regime to survive.
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Figure 10. Lower value of s tends to increase the chance of regime survival

Thus autocratic regimes that understand the importance of public perception could
increase their chances of survival by manipulating it. During the post-election Iranian
protest in 2009, the Iranian government deliberately created rumors against itself and
then disproved it on national television, which turned out to be effective in discredit-
ing the opposition (Esfandiari 2010).

In reality, sudden shifts in sentiment often take place during revolutions. For in-
stance, the rumor that Mubarak’s family had fled Egypt would have sounded ridicu-
lous without the previous successful Tunisian revolution, during which Ben Ali actu-
ally escaped. The fact that it was widely reported and believed during the Egyptian
unrest was a sign of sentiment shift. In this case, the confirmed rumor in Tunisia
shifted the sentiment upward in Egypt and made the regime more vulnerable.

6.3. Censorship: The Power of Silence

Our model shows that rumors against a regime could coordinate more citizens to at-
tack, provided they are close to the truth. Thus autocratic governments may want to
block negative rumors against it and to stop citizens from talking about these rumors.
In reality, news censorship and the control of information flow are commonly adopted
by many governments concerned about their survival. However, does it always help
the regime to survive if censorship is adopted to screen out all negative information?
In this subsection we investigate this issue with our model. When citizens hear no ru-
mor about the regime, silence itself becomes a public signal about the regime strength,
and it is not obvious that news censorship necessarily increases the chances of regime
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survival.

Assume that the regime blocks any rumor z if z < K. In other words, only rumors
that suggest the regime is stronger than K can be heard and discussed by citizens.
We assume that citizens are aware of this censorship rule. Therefore it is common
knowledge that z < K when citizens do not hear a rumor. In this case, citizens cannot
communicate about the informativeness of z, since they do not have any knowledge
of it.

When z is observable, i.e., z ≥ K, the equilibrium is exactly the same as in our
“communication model.” When citizens hear no rumor, they understand that the
event z < K has taken place but the authority has censored the news. Taking θc as
the threshold for regime survival, they calculate the expected payoff of revolt in a
Bayesian fashion,

Pr[θ ≤ θc|z < K, xi] =

∫ θc
−∞

[
αΦ
(

K−t
σz

)
+ (1− α)Φ

(
K−s
σU

)]
1
σx

φ
(

t−xi
σx

)
dt∫ ∞

−∞

[
αΦ
(

K−t
σz

)
+ (1− α)Φ

(
K−s
σU

)]
1
σx

φ
(

t−xi
σx

)
dt

.

The equilibrium values of θ∗c depends on the censorship rule K. When K is very
small, it corresponds to the case where there is no effective censorship. When K is
very high, the regime blocks all the public information, no matter whether it is for or
against the regime. Therefore, in either case, θ∗c converges to the value θ∗ms in the “pure
noise model.”

We find that θ∗c is increasing then decreasing in K. To understand why θ∗c can be
increasing, suppose that the censorship rule is raised from an initially low value of K
to a slightly higher value K′. This means that rumors with realizations in [K, K′] are
now screened out. In a model with trustworthy news only, z ∈ [K, K′] is better news
for the regime than z < K. So the expected strength of the regime should be higher
conditional on z < K′ than conditional on z < K. In our model, however, rumors
with z ∈ [K, K′] can be worse news for the regime than those with z < K, because
rumors strongly against the regime are deemed incredible. This explains why citizens’
expectation about the strength of the regime conditional on hearing no news can be
lower when the censorship rule is tightened. As the expected payoff from attacking
upon hearing no news rises, the equilibrium threshold for regime survival θ∗c becomes
higher.

Now we return to the issue raised at the beginning of this subsection and examine
the effect of censorship on regime survival in the case where K = z′, i.e., the regime
blocks any rumors against it. See Figure 11(a) for illustration. The effect of censorship
is represented by the difference between the solid line for the “communication model”
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and the dashed line for the model with censorship in the left panel.

It is worth pointing out that the “censorship model” is a variant of the “mute
model” when z < K, since citizens cannot communicate when there is no rumor to
talk about. In a sense, citizens pool the effects of negative rumors, both more and
less dangerous ones, and use an average to make decision, given they cannot observe
the specific realization of z. It turns out that censorship does help the regime to sur-
vive when the realizations of rumors are the most dangerous ones (i.e., when θ∗(z)
is around the peak value). But when z is very far or close to z′, censorship hurts the
regime.

Figure 11(b) displays the ex ante survival probability in different states with and
without censorship. When θ is sufficiently low, censorship makes no difference: if θ

is lower than both θ∗c and θ∗, the regime collapses in both cases. If regime strength
is sufficiently high but lower than θ∗c , censorship actually lowers the probability of
survival. Not surprisingly, censorship becomes beneficial to the regime when θ > θ∗c :
the regime must survive with censorship, while there are chances that it collapses
without it.
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Figure 11. The “censorship model”

7. Conclusion

Social interaction is an important source of information for individuals, especially
when the coordination motive is important. Our paper highlights the significance of
this channel and contributes to this interesting but under-exploited topic.

It is not news that revolutions in history are often intertwined with rumors. It
is also not surprising that many rumors are intended to spur individuals’ participa-
tion. However, what strikes us is why some rumors, which often turned out to be
false later, could be so effective for mobilization, while others were simply ignored
and left no trace at all. We offer an analysis of this phenomenon in a global game
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framework. In this model, individuals’ skepticism toward rumors arises as a rational
response, instead of a behavioral assumption. Moreover, we explicate a novel mecha-
nism, where the effect of citizens’ skepticism can be undone or reinforced by commu-
nication among themselves. We stress that communication about the informativeness
of the rumor is the key.

To the best of our knowledge, our model is the first attempt to explicitly investi-
gate the role of rumors in a regime change game. In this paper, we choose to focus
on two key aspects of rumors: that they may or may not be true, and that people talk
about them. We provide a framework using mixture distributions to study unreliable
information. Such a framework may be useful in other applications. Our theory is
interpreted in the context of political revolution, but it can also be extended to model
rumors in bank runs, financial crises or currency attacks. We have not, however, ad-
dressed questions about how rumors originate or how they spread. Although we ex-
plore a number of communication protocols in this paper, our analysis is confined to
decentralized communication with random pairwise matching. The role played by so-
cial networks, mass media, and modern communication technologies in promulgating
or abating rumors remains to be studied.
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Appendix

Proof of Lemma 1. Let the type 1 error cost (saying one believes the rumor when it
turns out to be uninformative) and the type 2 error cost (saying one does not believe
the rumor when it turns out to be informative) be c1 and c2, respectively. We allow
probabilistic decision rules of the form Y(z, xi) ∈ [0, 1], where Y is the probability of
sending the message yk = 1 to one’s peer k. Agent i chooses a decision rule Y(z, xi) to
minimize her expected loss:

α
∫ ∞

−∞
(1−Y(z, xi)) c2

1
σI

φ

(
z− xi

σI

)
dz + (1− α)

∫ ∞

−∞
Y(z, xi)c1

1
σU

φ

(
z− s
σU

)
dz.

The objective function is linear in Y pointwise. Hence the optimal solution is a bang-
bang solution:

Y(z, xi) =

1, if αc2
1
σI

φ
(

z−xi
σI

)
≥ (1− α)c1

1
σU

φ
(

z−s
σU

)
;

0, otherwise.

This solution can be re-arranged to give Y(z, xi) = 1 if and only if:

ασ−1
I φ

(
σ−1

I (z− xi)
)

ασ−1
I φ

(
σ−1

I (z− xi)
)
+ (1− α)σ−1

U φ
(

σ−1
U (z− s)

) ≥ c1

c1 + c2
,

and Y(z, xi) = 0 otherwise. The left-hand side of the above is simply Pr[z ∼ I|z, xi]. If
we let δ = c1/(c1 + c2), then the optimal decision rule is the same as the communica-
tion rule (3).

Proof of Proposition 2. Part (1). Since (θ∗ms, x∗ms) satisfies the indifference condition of
the “pure noise model,” we have

Φ
(

θ∗ms − x∗ms
σx

)
= c.

By part (3) of Proposition 1, (θ∗ms, x∗ms) also satisfies the indifference condition of the
“public signal model” when z = z̃. Therefore,

Φ

(
θ∗ms − (βx∗ms + (1− β)z̃)√

βσx

)
= c.

The posterior belief P(θ∗ms|z̃, x∗ms) in the “mute model” is just the weighted average
of the left-hand-side of the two equations above. Hence P(θ∗ms|z̃, x∗ms) = c. Further-
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more, (θ∗ms, x∗ms) satisfies the attack equation of the “mute model.” Therefore, it is an
equilibrium for z = z̃.

Part (2). We first show that if z < z̃, then θ∗m(z) < θ∗ps(z). From the attack equation
(16), we can write Φ

(
σ−1

x (θ∗m − x∗m)
)
= 1− θ∗m. Therefore, the indifference condition

(15) can be written as:

c = w(z, x∗m)Φ

(
θ∗m − (βx∗m + (1− β)z)√

βσx

)
+ (1− w(z, x∗m))(1− θ∗m).

From the indifference condition of the “public signal model” and from the fact that
1− θ∗ms = c, we also have

c = w(z, x∗m)Φ

(
θ∗ps − (βx∗ps + (1− β)z)√

βσx

)
+ (1− w(z, x∗m))(1− θ∗ms).

These two equations, together with the fact that θ∗ps > θ∗ms when z < z̃, imply

w(z, x∗m)Φ

(
q(θ∗m)− (1− β)z√

βσx

)
+ (1− w(z, x∗m))(1− θ∗m)

> w(z, x∗m)Φ

(
q(θ∗ps)− (1− β)z√

βσx

)
+ (1− w(z, x∗m))(1− θ∗ps),

where
q(θ∗) ≡ θ∗ − βx∗ = θ∗ − β(θ∗ + σxΦ−1(θ∗)).

To show θ∗m < θ∗ps from the above inequality, it suffices to show that dq(θ∗)/dθ∗ ≤ 0.
We have

dq(θ∗)
dθ∗

= 1− β− βσx

φ (Φ−1(θ∗))
≤ 1− β− βσx

√
2π,

which is negative by assumption (1). Hence θ∗m < θ∗ps when z < z̃.

Next, we show that θ∗m(z) > θ∗ms if z < z̃. Suppose this is not true. Then Φ(σ−1
x (θ∗m−

x∗m)) = 1− θ∗m ≥ 1− θ∗ms = c, which implies

Φ

(
θ∗m − (βx∗m + (1− β)z)√

βσx

)
≤ c.

Moreover, the fact that (θ∗ms, x∗ms) satisfies the indifference condition of the “public
signal model” at z = z̃ implies

Φ

(
θ∗ms − (βx∗ms + (1− β)z̃)√

βσx

)
= c.
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These two conditions can be combined to give

q(θ∗m)− q(θ∗ms) ≤ (1− β)(z− z̃) < 0.

Since dq(θ∗)/dθ∗ < 0, this inequality implies θ∗m > θ∗ms, a contradiction. Thus, when
z < z̃, we must have θ∗m(z) ∈ (θ∗ms, θ∗ps(z)). The proof of part (2b) is symmetric.

Part (3). Combine equations (15) and (16) to get

θ∗m = (1− c) +

[
Φ

(
θ∗m − [βx∗m + (1− β)z]√

βσx

)
− c

]
· w(z, x∗m)

1− w(z, x∗m)
.

As z goes to infinity, x∗m(z) must remain finite, otherwise it would violate equation
(16). For any finite x∗m, limz→∞ w(z, x∗m) = 0. Therefore,

lim
z→∞

θ∗m(z) = 1− c = θ∗ms.

A similar argument establishes that limz→−∞ θ∗m(z) = θ∗ms.

Part (4). We show that (a) θ∗m(z) is increasing then decreasing for z ∈ (−∞, z̃]; and
(b) θ∗m(z) is decreasing then increasing for z ∈ [z̃, ∞).

Fix a z0 ∈ (−∞, z̃]. Define

f (z) ≡ P(θ∗m(z0)|z, x∗m(z0)).

We show that f is single-peaked in z for z ∈ (−∞, z̃]. It suffices to verify that d f (z)/dz =

0 implies d2 f (z)/dz2 < 0. To simplify the notation, we use the subscript I or U to
denote the posterior distribution (or density) when z is known to be informative or
uninformative, respectively. We have

d f (z)
dz

= (ΦI −ΦU)
∂w
∂z
− w

∂ΦI

∂z

=

[
(1− w)

(
z− s
σ2

U
+

x∗m(z0)− z
σ2

I

)(
1− ΦU

ΦI

)
− 1− β√

βσx

φI

ΦI

]
wΦI .
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When d f (z)/dz = 0, the second derivative is given by:

1
wΦI

d2 f (z)
dz2 = −w(1− w)

(
z− s
σ2

U
+

x∗m(z0)− z
σ2

I

)2(
1− ΦU

ΦI

)

+ (1− w)

(
1

σ2
U
− 1

σ2
I

)(
1− ΦU

ΦI

)

+ (1− w)

(
z− s
σ2

U
+

x∗m(z0)− z
σ2

I

)(
d (1−ΦU/ΦI)

dz

)

−
(

1− β

σx
√

β

)
d (φI/ΦI)

dz
.

(i) The first term is negative because ΦI > ΦU for z < z̃. To see this, suppose the
contrary is true. Then ΦI ≤ ΦU implies

θ∗m(z0) +
√

βx∗m(z0) ≤ (1 +
√

β)z.

But for z0 ≤ z̃ the left-hand side is greater than θ∗ms +
√

βx∗ms, which is equal to
(1 +

√
β)z̃, a contradiction. (ii) The second term is negative because σ2

U > σ2
I from as-

sumption (2). (iii) The third term is negative because (z− s)/σ2
U +(x∗m(z0)− z)/σ2

I > 0
whenever d f (z)/dz = 0 and because 1− ΦU/ΦI is decreasing in z. (iv) The fourth
term is negative because the function φI/ΦI is increasing in z.

The single-peakedness of f (z) for z ∈ (−∞, z̃] implies that in this range there can be
at most one z1 6= z0 such that θ∗m(z1) = θ∗m(z0). Suppose otherwise. Let z1 6= z2 6= z0

be such that θ∗m(z1) = θ∗m(z2) = θ∗m(z0). By the attack equation (16), this implies
x∗m(z1) = x∗m(z2) = x∗m(z0). Since (θ∗m(z0), x∗m(z0)) satisfies the equilibrium conditions
for z ∈ {z1, z2, z0}, the equation f (z) = c has at least three solutions, which contradicts
the single-peakedness of f .

Parts (1), (2a), and (3) of the proposition, coupled with the fact that there is at most
one z1 6= z0 such that θ∗m(z1) = θ∗m(z0), together establish that θ∗m(z) is increasing then
decreasing for z ∈ (−∞, z̃].

For the case z ∈ [z̃, ∞), write:

d f (z)
dz

=

[
(1− w)

(
z− s
σ2

U
+

x∗m(z0)− z
σ2

I

)(
1−ΦU

1−ΦI
− 1
)
− 1− β√

βσx

φI

1−ΦI

]
w(1−ΦI).

We can show that the bracketed term is increasing when it is equal to zero, because
ΦI < ΦU when z > z̃ and because φI/(1−ΦI) is decreasing in z. Hence f (z) must be
decreasing then increasing in z in this range, which, together with parts (1), (2b), and
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(3) of the proposition, imply that θ∗m(z) is decreasing then increasing for z ∈ [z̃, ∞).

Proof of Proposition 3. Part (1). We only prove the limiting properties of x∗U(z) and
θ∗(z) here. The limiting properties of x∗I (z) require comparing the rates of convergence
of different functions, and they are formally established in Lemma 3 in the Technical
Appendix.

Suppose the limit values of both x∗U(z) and θ∗(z) are finite. The indifference condi-
tion (11) in “communication model” requires

lim
z→∞

∫ θ∗

−∞

1− J(t, z)
Pr[yi = 0|z, x∗U]

p(t|z, x∗U)dt = c.

By Lemma 3 (Claim 1) in the Technical Appendix, both x(z) and x(z) go to infinity as
z goes to infinity. Therefore, for any t ≤ θ∗, the probability that xj does not belong to
[x(z), x(z)] goes to one. We thus have

lim
z→∞

1− J(t, z)
Pr[yi = 0|z, x∗U]

= 1.

The indifference condition for type x∗U becomes:

lim
z→∞

∫ θ∗

−∞
p(t|z, x∗U)dt = Φ

(
θ∗ − x∗U

σx

)
= c,

where the first equality follows because w(z, x∗U) goes to 0 as z goes to infinity.

When z goes to infinity, J(θ∗, z) goes to zero. Therefore the attack equation (12) for
the “communication model” becomes,

lim
z→∞

J(θ∗, z)Φ
(

x∗I − θ∗

σx

)
+ (1− J(θ∗, z))Φ

(
x∗U − θ∗

σx

)
= Φ

(
x∗U − θ∗

σx

)
= θ∗.

Given (θ∗, x∗U) solves the same equation system as that in the “pure noise model,”
we conclude that limz→∞ x∗U(z) = x∗ms and limz→∞ θ∗(z) = θ∗ms. The proof of the case
for the limit as z goes to minus infinity is analogous.

Part (2). From part (1), x∗I (z) > x∗U(z) for z sufficiently small and x∗I (z) < x∗U(z) for
z sufficiently large. Both x∗I (z) and x∗U(z) are continuous. Therefore there exists a z′

such that x∗I (z
′) = x∗U(z

′).

Let θ∗(z′) = θ′ and x∗I (z
′) = x∗U(z

′) = x′. We proceed to establish that (θ′, x′) solves
the “mute model” as well. To see this, we first note that x∗I = x∗U implies that the mass
of the swing population is zero. Hence, the attack equation (12) of the “communication
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model” reduces to the attack equation (16) of the “mute model.” Next, note that for
any value of z′, x′ and θ′, we have

P(θ′|z′, x′) = Pr[yi = 1|z′, x′]P(θ′|z′, x′, 1) + Pr[yi = 0|z′, x′]P(θ′|z′, x′, 0).

Therefore, if z′, x′, and θ′ satisfy the indifference conditions P(θ′|z′, x′, 1) = c and
P(θ′|z′, x′, 0) = c in the “communication model,” then they must satisfy the indiffer-
ence condition P(θ′|z′, x′) = c in the “mute model” as well.

Part (3). Let θ∗m(z̃) = θ̃ and x∗m(z̃) = x̃. We need to show that (θ̃, x̃, x̃) solves
the “communication model” at z = z̃. Toward this end, it suffices to show that
P(θ̃|z̃, x̃, 1) = c. Given that (θ̃, x̃) solves the “mute model” at z = z̃, we have P(θ̃|z̃, x̃) =
c. These two conditions would imply that P(θ̃|z̃, x̃, 0) = c. Hence the indifference con-
dition (11) for the “communication model” is satisfied. Given that x∗I (z̃) = x∗U(z̃) = x̃,
the attack equation (12) holds as well.

Both J(t, z̃) and p(t|z̃, z̃) are symmetric about the point t = z̃, which gives

∫ z̃

−∞
J(t, z̃)p(t|z̃, z̃)dt = 0.5

∫ ∞

−∞
J(t, z̃)p(t|z̃, z̃)dt

Hence, P(z̃|z̃, z̃, 1) = 0.5. For c = 0.5, θ̃ = x̃ = z̃. Therefore, we have P(θ̃|z̃, x̃, 1) = c.
This establishes that θ∗(z̃) = θ∗m(z̃) and x∗I (z̃) = x∗U(z̃) = x∗m(z̃).

To show that x∗I (z) > x∗U(z) for any z < z̃, suppose the contrary is true. Then,
since x∗I (z) > x∗U(z) in the limit as z goes to minus infinity, there must be an z0 < z̃
such that x∗I (z0) = x∗U(z0). The argument in part (2) shows that the “communication
model” and the “mute model” are equivalent whenever x∗I = x∗U. We therefore have
x∗I (z0) = x∗U(z0) = x∗m(z0) ≡ x0 and θ∗(z0) = θ∗m(z0) ≡ θ0.

Since (θ0, x0) solves “mute model,” by Proposition 2, we must have θ0 > z̃ > z0

and x0 > z̃ > z0. Let X0 = βx0 + (1− β)z0 > z0.

Since (θ0, x0, x0) solves “communication model” as well, we must have

P(θ0|z0, x0, 1) = c = P(θ0|z0, x0).

Lemma 4 in the Technical Appendix shows that the function P(·|z0, x0, 1)− P(·|z0, x0)

crosses zero once and from below. Hence P(θ0|z0, x0, 1)− P(θ0|z0, x0) = 0 implies

P(z0|z0, x0, 1)− P(z0|z0, x0) < 0,

because z0 < θ0.

We next show that the above inequality is a contradiction. Write the left-hand side
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of the inequality as:∫ z0
−∞ J(t, z0)p(t|z0, x0)dt∫ ∞
−∞ J(t, z0)p(t|z0, x0)dt

− P(z0|z0, x0)

=
(1− P(z0|z0, x0))

∫ z0
−∞ J(t, z0)p(t|z0, x0)dt− P(z0|z0, x0)

∫ ∞
z0

J(t, z0)p(t|z0, x0)dt∫ ∞
−∞ J(t, z0)p(t|z0, x0)dt

=

∫ ∞
0 J(z0 − τ, z0)h(τ)dτ∫ ∞
−∞ J(t, z0)p(t|z0, x0)dt

,

where we have made use of the symmetry of J(t, z0) about the point t = z0, and where

h(τ) ≡ p(z0 − τ|z0, x0)(1− P(z0|z0, x0))− p(z0 + τ|z0, x0)P(z0|z0, x0).

Lemma 5 in the Technical Appendix shows that there exists a τ′ such that h(τ) > 0
for τ < τ′ and h(τ) < 0 for τ > τ′. Therefore, the fact that J(z0 − τ, z0) is decreasing
in τ for τ > 0 implies that∫ ∞

0
J(z0 − τ, z0)h(τ)dτ > J(z0 − τ′, z0)

∫ ∞

0
h(τ)dτ = 0.

Thus, P(z0|z0, x0, 1)− P(z0|z0, x0) > 0, which establishes the contradiction.

Proof of Lemma 2. We proceed in a number of steps.

Claim 1. Pr[yi = 1|z, xi] is increasing in xi for xi < z and decreasing in xi for xi > z.

Take derivative of Pr[yi = 1|z, xi] with respect to xi to get:

∂ Pr[yi = 1|z, xi]

∂xi
= −w

β√
1 + βσx

[
φ

(
x(z)− Xi√

1 + βσx

)
− φ

(
x(z)− Xi√

1 + βσx

)]

− (1− w)
1√
2σx

[
φ

(
x(z)− xi√

2σx

)
− φ

(
x(z)− xi√

2σx

)]
+

∂w
∂xi

F(β, z, xi)

where

F(β, z, xi) = Φ

(
x(z)− Xi√

1 + βσx

)
−Φ

(
x(z)− Xi√

1 + βσx

)
−Φ

(
x(z)− xi√

2σx

)
+ Φ

(
x(z)− xi√

2σx

)
,

and Xi = βxi + (1− β)z. It is straightforward to show that F(β, z, xi) is decreasing in
β, with F(1, z, xi) = 0. Thus, F(β, z, xi) > 0 for β < 1. Since x(z) + x(z) = 2z, the first
two terms are positive if xi < z. Since ∂w/∂xi > 0 for xi < z, the third term is positive
as well. Therefore, the derivative is positive. If xi > z, then the opposite is true.
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Claim 2. When c = 0.5,

∂x̂I(θ
′, z′)

∂θ
=

−p(θ′|z′, x′)∫ θ′

−∞
J(t,z′)
J(θ′,z′)

∂p(t|z′,x′)
∂x dt

and
∂x̂U(θ

′, z′)
∂θ

=
−p(θ′|z′, x′)∫ θ′

−∞
1−J(t,z′)
1−J(θ′,z′)

∂p(t|z′,x′)
∂x dt

.

When c = 0.5, the value of x′ that satisfies P(θ′|z′, x′, 1) = c is x′ = z′. By Claim 1,
∂ Pr[yi = 1|z′, x′]/∂xi = 0 at this point. Since

P(θ′|z′, x′, 1) =

∫ θ′

−∞ J(t, z′)p(t|z′, x′)dt
Pr[yi = 1|z′, x′]

,

the claim follows by the implicit function theorem. The expression for ∂xU/∂θ is de-
rived in a similar fashion.

Claim 3. When c = 0.5,

∫ θ′

−∞

J(t, z′)
J(θ′, z′)

∂p(t|z′, x′)
∂x

dt >
∫ θ′

−∞

∂p(t|z′, x′)
∂x

dt >
∫ θ′

−∞

1− J(t, z′)
1− J(θ′, z′)

∂p(t|z′, x′)
∂x

dt.

When c = 0.5, θ′ = z′ = x′. Therefore, J(t, z′) < J(θ′, z′) for all t < θ′. Moreover,

∂p(t|z′, x′)
∂x

= −w
1
σ2

x
φ′I − (1− w)

1
σ2

x
φ′U +

∂w
∂x

(
1√
βσ

φI −
1
σ

φU

)
,

where the subscript I indicates that the corresponding function is evaluated at (t −
X′)/(

√
βσx). Since t < θ′ = X′, φ′I is positive. Likewise, the subscript U indicates

that the corresponding function is evaluated at (t − x′)/σx. Since t < θ′ = x′, φ′U is
also positive. Finally, since ∂w/∂x = 0 at x′ = z′, we have ∂p(t|z′, x′)/∂x < 0. Thus,
the first inequality of the claim follows. The second inequality can be established in a
similar way.

Since x′ satisfies the indifference condition P(θ′|z′, x′) = c of the “mute model,” by
the implicit function theorem we obtain:

∂x̂m(θ′, z′)
∂θ

=
−p(θ′|z′, x′)∫ θ′

−∞
∂p(θ|z′,x′)

∂x dθ
.

The ranking of the partial derivatives in the lemma then follows by Claims 2 and
3. Finally, since P(θ|z, x, 0) increases in θ and decreases in x, we have ∂x̂U/∂θ > 0.
This proves inequality (20) the lemma. Inequality (21) then follows immediately from
Lemma 6 in the Technical Appendix, which shows that ∂x̂/∂z = 1− ∂x̂/∂θ.
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Proof of Proposition 4. By Claim 2 in the proof of Lemma 2,

J
∂x̂I

∂θ
+ (1− J)

∂x̂U

∂θ

=− p(θ′|z′, x′)

J(θ′, z′)
1∫ θ′

−∞
J(t,z′)
J(θ′,z′)

∂p(t|z′,x′)
∂x dt

+ (1− J(θ′, z′))
1∫ θ′

−∞
1−J(t,z′)
1−J(θ′,z′)

∂p(t|z′,x′)
∂x dt


>− p(θ′|z′, x′)

1

J(θ′, z′)
∫ θ′

−∞
J(t,z′)
J(θ′,z′)

∂p(t|z′,x′)
∂x dt + (1− J(θ′, z′))

∫ θ′

−∞
1−J(t,z′)
1−J(θ′,z′)

∂p(t|z′,x′)
∂x dt

=
−p(θ|z′, x′)∫ θ′

−∞
∂p(t|z′,x′)

∂x dt

=
∂x̂m

∂θ
,

where the inequality follows from Jensen’s inequality and the fact that the function
1/t is concave for t < 0. This establishes the first inequality of (24). Moreover, since

Px = −p + (1− β)wφ

(
θ′ − X′√

βσx

)
< 0,

we have ∂x̂m/∂θ > 1. This establishes the second inequality of (24).

Inequality (25) follows from (24) and from Lemma 6 in the Technical Appendix,
which shows that

∂x̂I

∂z
+

∂x̂I

∂θ
=

∂x̂m

∂z
+

∂x̂m

∂θ
=

∂x̂U

∂z
+

∂x̂U

∂θ
= 1.

Finally, inequalities (24) and (25), together with the comparison of the decomposi-
tion equation (18) of the “mute model” and the corresponding decomposition equation
(23) of the “communication model,” establish the proposition.
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Technical Appendix
(Not intended for publication)

Lemma 3. In the “communication model,” limz→−∞ x∗I (z) = +∞ and limz→∞ x∗I (z) =
−∞.

Proof. We only prove the first part of this lemma; the proof of the second part is similar.

Claim 1. (a) limz→−∞ x(z)/z = 1 + σI/σU; and (b) limz→−∞ x(z)/z = 1− σI/σU.

Recall that x(z) is the larger solution to w(z, x) = δ. Solving this equation gives

x(z) = z +

√
σ2

I
σ2

U
(z− s)2 − 2σ2

I log
σ2

I δ(1− α)

σ2
U(1− δ)α

≡ z + κ(z).

Since limz→∞ κ(z)/z = σI/σU, this establishes part (a). Part (b) also follows because
x(z) = z− κ(z).

Claim 2. For any finite θ̂ and any x∗I 6= ∞, limz→−∞ P(θ̂|z, x∗I , yi = 1, z ∼ I) = 1.

Let limz→−∞ x∗I (z)/z = γ ≥ 0.

Consider the complementary probability,

Pr[θ > θ̂|z, x∗I , yi = 1, z ∼ I] =

∫ ∞
θ̂ J(t, z) 1√

βσx
φ

(
t−z−β(x∗I−z)√

βσx

)
dt

Φ
(

x(z)−z−β(x∗I−z)√
1+βσx

)
−Φ

(
x(z)−z−β(x∗I−z)√

1+βσx

) .

Since J(t, z) is decreasing in t for t > z, we have

lim
z→−∞

Pr[θ > θ̂|z, x∗I , yi = 1, z ∼ I] ≤ lim
z→−∞

J(θ̂, z)
(

1−Φ
(

θ̂−z−β(x∗I−z)√
βσx

))
Φ
(

x(z)−z−β(x∗I−z)√
1+βσx

)
−Φ

(
x(z)−z−β(x∗I−z)√

1+βσx

) .

Note that limz→−∞(x(z)− z− β(x − z))/z = β(1− γ)− σI/σU. There are two cases
to consider. If β(1− γ)− σI/σU ≤ 0, then the denominator of the term above does not
vanish as z goes to minus infinity, while the numerator goes to zero. So the limit of the
ratio is 0. If β(1− γ) − σI/σU > 0 then both denominator and numerator vanishes.
However, J(θ̂, z) goes to 0 at the rate at which (x(z) − θ̂)/σx goes to minus infinity,
which is equal to (1 − σI/σU)/σx. The denominator goes to 0 at the rate at which
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(x(z)− z− β(x− z))/(
√

1 + βσx) goes to minus infinity, which is

β(1− γ)− σI/σU√
1 + βσx

<
1− σI/σU

σx
.

Hence, in both cases,

lim
z→−∞

J(θ̂, z)

Φ
(

x(z)−z−β(x∗I−z)√
1+βσx

)
−Φ

(
x(z)−z−β(x∗I−z)√

1+βσx

) = 0.

This implies that limz→−∞ P(θ̂|z, x∗I , yi = 1, z ∼ I) = 1.

Claim 3. For any finite θ̂ and any x∗I 6= ∞, limz→−∞ P(θ̂|x∗I , yi = 1, z ∼ U) = 1.

Let limz→−∞ x∗I (z)/z = γ ≥ 0.

Consider limit of the complementary probability,

lim
z→−∞

Pr[θ > θ̂|x∗I , yi = 1, z ∼ U] = lim
z→∞

∫ ∞
θ̂ J(t, z) 1

σx
φ
(

t−x∗I
σx

)
dt

Φ
(

x(z)−x∗I√
2σx

)
−Φ

(
x(z)−x∗I√

2σx

)
≤ lim

z→−∞

J(θ̂, z)
(

1−Φ
(

θ̂−x∗I
σx

))
Φ
(

x(z)−x∗I√
2σx

)
−Φ

(
x(z)−x∗I√

2σx

) .

The term J(θ̂, z) goes to 0 at the rate (1−σI/σU)/σx. If 1−σI/σU > γ, the denominator
goes to 0 at the rate

1− γ− σI/σU√
2σx

<
1− σI/σU

σx
.

Therefore the ratio goes to 0 as z goes to minus infinity. If 1− σI/σU ≤ γ, the denomi-
nator does not vanish. So the ratio again goes to zero.

To prove the lemma, note that P(θ̂|z, x∗I , yi = 1) is just a weighted average of
P(θ̂|z, x∗I , yi = 1, z ∼ I) and P(θ̂|z, x∗I , yi = 1, z ∼ U). By Claims 2 and 3, we must
have

lim
z→−∞

P(θ̂|z, x∗I , yi = 1) = 1 > c,

for any finite θ̂ and any x∗I 6= ∞. We know from part (1) of Proposition 3 that the
limit of θ∗(z) is finite. Therefore the indifference condition (10) cannot hold unless
limz→−∞ x∗I (z) = ∞.

Lemma 4. The function,

g(θ) ≡ P(θ|z0, x0, 1)− P(θ|z0, x0),
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crosses zero once and from below.

Proof. The function g(θ) has the same sign as

∫ θ

−∞
(J(t, z0)− Pr[yi = 1|z0, x0]))p(t|z0, x0)dt.

Note that J(t, z0) is increasing then decreasing, with limt→±∞ J(t, z0) = 0. Moreover,
Pr[yi = 1|z0, x0] = E[J(t, z0)] (where the expectation is taken using the probability
density p(·|z0, x0)). Therefore, there exist t′ and t′′ such that the integrand is negative
for t < t′, positive for t ∈ (t′, t′′), and negative for t > t′′. This implies that g(θ) is
decreasing for θ < t′, increasing for θ ∈ (t′, t′′), and decreasing for θ > t′′. Finally,
note that g(0) = 0 and g(∞) = 0. Therefore, there is an unique θ′ such that g(θ) < 0
for θ < θ′ and g(θ) > 0 for θ > θ′.

Lemma 5. For z0 < x0, the function,

h(τ) ≡ p(z0 − τ|z0, x0)(1− P(z0|z0, x0))− p(z0 + τ|z0, x0)P(z0|z0, x0),

crosses zero once and from above.

Proof. Let X0 = βx0 + (1− β)z0. Write h(τ) in the following form:

w√
βσx

[
φ

(
z0 − τ − X0√

βσx

)
(1− P(z0|z0, x0))− φ

(
z0 + τ − X0√

βσx

)
P(z0|z0, x0)

]

+
1− w

σx

[
φ

(
z0 − τ − x0

σx

)
(1− P(z0|z0, x0))− φ

(
z0 + τ − x0

σx

)
P(z0|z0, x0)

]
.

The sign of the first term is the same as the sign of

l1(τ)−
P(z0|z0, x0)

1− P(z0|z0, x0)
,

where

l1(τ) =
φ

(
z0−τ−X0√

βσx

)
φ

(
z0+τ−X0√

βσx

) = exp
{

2(x0 − z0)τ

σ2
x

}
.

Since z0 < X0 < x0,

P(z0|z0, x0) = wΦ

(
z0 − X0√

βσx

)
+ (1− w))Φ

(
z0 − x0

σx

)
< 0.5.
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Moreover, l1(τ) is strictly increasing with l1(0) = 1 and limτ→∞ l1(τ) = ∞. Therefore,
the first term crosses zero from above.

Similarly, the sign of the second term is the same as the sign of

l2(τ)−
P(z0|z0, x0)

1− P(z0|z0, x0)
,

where

l2(τ) =
φ
(

z0−τ−x0
σx

)
φ
(

z0+τ−x0
σx

) = exp
{

2(x0 − z0)τ

σ2
x

}
= l1(τ).

Therefore, the second term also crosses zero once and from above. Moreover it crosses
zero at exactly the same point as the first term does. This implies that the function h(τ)
itself crosses zero once and from above.

Lemma 6. At z = z′ = z̃ and θ = θ′,

∂x̂I

∂z
+

∂x̂I

∂θ
=

∂x̂m

∂z
+

∂x̂m

∂θ
=

∂x̂U

∂z
+

∂x̂U

∂θ
= 1

Proof. Write the relevant indifference conditions in the following form:

τm(θ, z, x) ≡ P(θ|z, x)− c = 0,

τI(θ, z, x) ≡
∫ θ

−∞
J(t, z)p(t|z, x)dt− c Pr[yi = 1|z, x] = 0,

τU(θ, z, x) ≡
∫ θ

−∞
(1− J(t, z))p(t|z, x)dt− c(1− Pr[yi = 1|z, x]) = 0.

Claim 1. At z = z′ = z̃ and θ = θ′, ∂x̂m/∂z + ∂x̂m/∂θ = 1.

In the “mute model,” we have

∂τm(θ′, z′, x′)
∂z

= −w
1− β√

βσx
φ

(
θ′ − X′√

βσx

)
+

∂w
∂z

(
Φ

(
θ′ − X′√

βσx

)
−Φ

(
θ′ − x′

σx

))

= −w
1− β√

βσx
φ

(
θ′ − X′√

βσx

)
,

where the last equality follows because X′ = βx′ + (1− β)z′ = x′. Similarly,

∂τm(θ′, z′, x′)
∂x

= −w
β√
βσx

φ

(
θ′ − X′√

βσx

)
− (1− w)

1
σx

φ

(
θ′ − x′

σx

)
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It is straightforward to see that at the point (θ′, z′, x′),

∂τm

∂z
+

∂τm

∂x
= −∂τm

∂θ
.

The claim then follows by the implicit function theorem.

Claim 2. At z = z′ = z̃ and θ = θ′,

∂τI

∂x
= J(θ′, z′)

∂P(θ′|z′, x′)
∂x

− D,

∂τU

∂x
= (1− J(θ′, z′))

∂P(θ′|z′, x′)
∂x

+ D;

with D < 0.

First, note that ∂ Pr[yi = 1|z′, x′]/∂x = 0 by Claim 1 in the proof of Lemma 2.
Rewrite τI using integration-by-parts and then take derivative with respect to x to get

D =
∫ θ′

−∞

∂J(t, z′)
∂θ

∂P(t|z′, x′)
∂x

dt.

This term is negative because ∂J/∂θ > 0 for t < θ′ and ∂P/∂x < 0. The derivation of
∂τU/∂x follows the same lines.

Claim 3. At z = z′ = z̃ and θ = θ′,

∂τI

∂z
= J(θ′, z′)

∂P(θ′|z′, x′)
∂z

+ Q,

∂τU

∂z
= (1− J(θ′, z′))

∂P(θ′|z′, x′)
∂z

−Q.

where Q = D.

Let T1 = Pr[yi = 1, θ ≤ θ′|z′, x′, z ∼ I], T2 = Pr[yi = 1|z′, x′, z ∼ I], T3 = Pr[yi =

1, θ ≤ θ′|z′, x′, z ∼ U], and T4 = Pr[yi = 1|z′, x′, z ∼ U]. We can write

τI(θ, z, x) = w(T1 − cT2) + (1− w)(T3 − cT4).

Therefore,
∂τI(θ

′, z′, x′)
∂z

= w
∂

∂z
(T1 − cT2) + (1− w)

∂

∂z
(T3 − cT4),

with a term involving ∂w/∂z that vanishes because T1 − cT2 = T3 − cT4 = 0 when
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c = 0.5. Consider first the derivative of the term T1 − cT2:

∂

∂z
(T1 − cT2) =

∫ θ′

−∞
J(t, z′)

1√
βσx

∂φ

(
t−X′√

βσx

)
∂z

dt +
∫ θ′

−∞

∂J(t, z′)
∂z

1√
βσx

φ

(
t− X′√

βσx

)
dt

− c

[
dκ
dz + β√
1 + βσx

φ

(
x(z′)− X′√

1 + βσx

)
−
−dκ

dz + β√
1 + βσx

φ

(
x(z′)− X′√

1 + βσx

)]
.

Use integration-by-parts on the first term to get

∂

∂z
(T1 − cT2) =

1
w

J(θ′, z′)
∂P(θ′|z′, x′)

∂z

+
∫ θ′

−∞

(
(1− β)

∂J(t, z′)
∂θ

+
∂J(t, z′)

∂z

)
1√
βσx

φ

(
t− X′√

βσx

)
dt

− c

[
dκ
dz + β√
1 + βσx

φ

(
x(z)− X′√

1 + βσx

)
−
−dκ

dz + β√
1 + βσx

φ

(
x(z)− X′√

1 + βσx

)]
.

From this, we obtain:

∂

∂z
(T1 − cT2) =

1
w

J(θ′, z′)
∂P(θ′|z′, x′)

∂z

+
dκ
dz + β√
1 + βσx

φ

(
x(z′)− X′√

1 + βσx

)
Φ

θ′ − X′+βx(z′)
1+β√

β
1+β σx


−
−dκ

dz + β√
1 + βσx

φ

(
x(z′)− X′√

1 + βσx

)
Φ

θ′ − X′+βx(z′)
1+β√

β
1+β σx


− c

[
dκ
dz + β√
1 + βσx

φ

(
x(z′)− X′√

1 + βσx

)
−
−dκ

dz + β√
1 + βσx

φ

(
x(z′)− X′√

1 + βσx

)]

=
1
w

J(θ′, z′)
∂P(θ′|z′, x′)

∂z

+
β√

1 + βσx
φ

(
x(z′)− X′√

1 + βσx

)Φ

θ′ − X′+βx(z′)
1+β√

β
1+β σx

−Φ

θ′ − X′+βx(z′)
1+β√

β
1+β σx

 ,
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where the second equality uses the fact that z′ = θ′ = X′ and c = 0.5. Similarly,

∂

∂z
(T3 − cT4) =

1 + dκ
dz√

2σx
φ

(
x(z′)− x′√

2σx

)
Φ

θ′ − x′+x(z′)
2√

1
2 σx


−

1− dκ
dz√

2σx
φ

(
x(z′)− x′√

2σx

)
Φ

θ′ − x′+x(z′)
2√

1
2 σx


− c

[
1 + dκ

dz√
2σx

φ

(
x(z′)− x′√

2σx

)
−

1− dκ
dz√

2σx
φ

(
x(z′)− x′√

2σx

)]

=
1√
2σx

φ

(
x(z′)− x′√

2σx

)Φ

θ′ − x′+x(z′)
2√

1
2 σx

−Φ

θ′ − x′+x(z′)
2√

1
2 σx

 .

Combining the two terms, and noting that

Q =
wβ√

1 + βσx
φ

(
x(z′)− X′√

1 + βσx

)Φ

θ′ − X′+βx(z′)
1+β√

β
1+β σx

−Φ

θ′ − X′+βx(z′)
1+β√

β
1+β σx


+

(1− w)√
2σx

φ

(
x(z′)− x′√

2σx

)Φ

θ′ − x′+x(z′)
2√

1
2 σx

−Φ

θ′ − x′+x(z′)
2√

1
2 σx


= D,

we obtain ∂τI/∂z = J∂P/∂z + D. Moreover, since τU = τm− τI , this implies ∂τU/∂z =

(1− J)∂P/∂z− D.

Claims 2 and 3 imply that

∂τI

∂x
+

∂τI

∂z
= J

(
∂P(θ′|z′, x′)

∂x
+

∂P(θ′|z′, x′)
∂z

)
.

From Claim 1, the term in parenthesis is equal to −p(θ′|z′, x′). Therefore, ∂τI/∂x +

∂τI/∂z = −∂τI/∂θ. By the implicit function theorem, the lemma follows.

Proof of Proposition 1. In the “pure noise model,” the indifference condition for the
cut-off type x∗ms satisfies

Φ
(

θ∗ms − x∗ms
σx

)
= c,

while the attack equation for the equilibrium regime survival threshold θ∗ms satisfies

Φ
(

x∗ms − θ∗ms
σx

)
= θ∗ms.

54



Solving these two equations gives the equilibrium values of θ∗ms and x∗ms as stated in
the proposition.

In the “public signal model,” let X∗ps = βx∗ps + (1− β)z denote the posterior mean
of θ for the cut-off type x∗ps. The posterior variance is βσ2

x . The indifference condition
and the attack equation can be written, respectively, as:

Φ

(
θ∗ps − X∗ps√

βσx

)
= c,

Φ
(x∗ps − θ∗ps

σx

)
= θ∗ps.

Eliminate x∗ps from these two equations to get

θ∗ps −
βσx

(1− β)
Φ−1(θ∗ps) =

√
βσx

(1− β)
Φ−1(c) + z.

Assumption (1) implies that the left-hand side of the equality above is decreasing in
θ∗ps. Since the right-hand side is increasing in z, we have dθ∗ps/dz < 0. From the
indifference condition and the definition of X∗ps, we have

dθ∗ps

dz
− β

dx∗ps

dz
− (1− β) = 0.

Hence dx∗ps/dz < 0. This establishes part (1).

Taking limit of the attack equation gives limz→∞ θ∗ps(z) = 0, which then implies
limz→∞ x∗ps(z) = −∞. This establishes part (2a). Part (2b) is obtained analogously.

Since limz→∞ θ∗ps(z) < θ∗ms < limz→−∞ θ∗ps(z), and since θ∗ps(z) is strictly decreasing,
there exists a unique z̃ such that θ∗ps(z̃) = θ∗ms. From the attack equations in the “pure
noise model” and in the “public signal model,” θ∗ps(z̃) = θ∗ms implies x∗ps(z̃) = x∗ms.
This establishes part (3).

Finally, equilibrium uniqueness is established by Morris and Shin (2003) and An-
geletos and Werning (2006).
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