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ABSTRACT

This paper examines the optimal design of a futures hedge program for a risk-averse multinational
firm (MNF) under exchange rate uncertainty. All currency futures contracts are marked to market
and require interim cash settlement of gains and losses. The MNF commits to prematurely liqui-
dating its futures position on which the interim loss incurred exceeds a threshold level (i.e., the
liquidation threshold). When the liquidation threshold is exogenously given, we show that the MNF
optimally opts for an under-hedge (an over-hedge) should the futures exchange rates be not too
(sufficiently) positively autocorrelated. When the liquidation threshold is endogenously determined,
we show that the MNF voluntarily chooses to prematurely liquidate its futures position only if the
futures exchange rates are positively autocorrelated. In the case that the futures exchange rates are
uncorrelated or negatively autocorrelated, the MNF prefers not to commit to any finite liquidation
thresholds.
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1. Introduction

Multinational firms (MNFs) take liquidity risk seriously when devising their risk man-

agement strategies. Ignorance of liquidity risk is likely to result in fatal consequences for

even technically solvent MNFs. Prominent examples of this sort include the disaster at

Metallgesellschaft and the debacle of Long-Term Capital Management.1

In a recent article in this Journal, Lien and Wong (2005) have examined the effect

of liquidity risk on the behavior of a risk-averse MNF facing exchange rate uncertainty.

In the two-period model of Lien and Wong (2005), the MNF trades unbiased currency

futures contracts that are marked to market for hedging purposes. In order to meet the

indeterminate interim loss from its futures position due to the marking-to-market process,

∗Corresponding author. Tel.: +852 2859 1044; fax: +852 2548 1152.
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1See Jorion (2007) for details of these cases.
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the MNF puts aside a fixed amount of capital earmarked for its futures hedge program.

Succinctly, the MNF commits to prematurely liquidating its futures position on which

the interim loss incurred exhausts the earmarked capital. The capital commitment as such

constitutes a liquidity constraint that affects the MNF’s optimal hedging decision. Focusing

on the case that the futures exchange rates follow a random walk, Lien and Wong (2005)

show that the MNF optimally under-hedges its exchange rate risk exposure in response

to the exogenous liquidity constraint. The coexistence of the exchange rate risk and the

liquidity risk makes an under-hedge optimal.

The purpose of this paper is to characterize the optimal design of a futures hedge

program for a risk-averse MNF within the two-period model of Lien and Wong (2005)

with two caveats. First, we allow the futures exchange rate dynamics to be a first-order

autoregression, rendering a random walk to simply be a special case. Second, we endogenize

an provision for premature termination of the MNF’s futures hedge program. When both

extensions are incorporated into the model of Lien and Wong (2005), we essentially study the

MNF’s futures hedging decision in an optimal stopping approach, which possibly depends

on how the futures exchange rates are autocorrelated.2

Asset pricing models that consider speculative interactions between rational and irra-

tional (noise) traders result in price bubbles and fads (see, e.g., Black, 1986; Cutler et al.,

1990, 1991; DeLong et al., 1990; and Shiller, 1984). Since bubbles and fads are transitory

components of asset prices, they decay exponentially over a long period of time, thereby

inducing negative autocorrelations at higher lags and forcing prices to revert to their funda-

mental levels. At shorter lags, however, bubbles and fads give an impression of persistence

of price deviations from equilibrium values, thereby giving rise to positive autocorrelations.

It is well-documented that short horizon returns in stock markets possess positive auto-

correlations (see, e.g., French and Roll, 1986; Lo and MacKinlay, 1988; and Poterba and

Summers, 1988). Puri et al. (2002) find that short horizon returns in currency futures mar-

kets also exhibit this empirical regularity. Specifically, the average autocorrelations observed

for weekly and monthly returns across different currencies and various lengths of holding

periods are mostly of the order of 0.015 and 0.04 per lag, respectively, and are statistically

significant. These empirical findings lead to rejection of the random walk hypothesis and

2We would like to thank an anonymous referee for pointing out that the MNF’s futures hedging decision
contains an optimal stopping problem, i.e., the optimal liquidation timing for the futures position.
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motivate us to specify the futures exchange rate dynamics as a first-order autoregression.3

We first consider the case that the MNF faces an exogenous liquidity constraint as in

Lien and Wong (2005), but allow the futures exchange rates to be autocorrelated. We show

that the MNF optimally under-hedges or over-hedges its exchange rate risk exposure in

response to the exogenous liquidity constraint, depending on whether the autocorrelation

coefficient of the futures exchange rate dynamics is lower or higher than a positive critical

value, respectively. These results thus generalize those of Lien and Wong (2005) in the

random walk case to the case of autocorrelated futures exchange rates.

We then consider the case that the MNF is able to choose a threshold of the interim loss

incurred on its futures position such that the MNF commits to prematurely terminating its

futures hedge program whenever the actual loss exceeds the chosen liquidation threshold.

The MNF’s ex-ante decision problem as such contains an optimal stopping problem, i.e., the

choice of optimal timing for the termination of the futures hedge program. We show that

the MNF voluntarily chooses to prematurely liquidate its futures position only if the futures

exchange rates are positively autocorrelated. A positive autocorrelation implies that a loss

from a futures position tends to be followed by another loss from the same position. The

MNF as such finds premature liquidation of its futures position to be ex-post optimal. The

liquidation threshold is thus chosen by the MNF to strike a balance between ex-ante and

ex-post efficient risk sharing. In the case that the futures exchange rates are uncorrelated

or negatively autocorrelated, premature liquidation of the futures position is never ex-post

optimal, thereby making the MNF prefer not to commit to any finite liquidation thresholds.

Finally, we follow Korn (2004) and Adam-Müller and Panaretou (2009) to consider an

alternative setting in which the MNF is allowed to adjust its futures positions over time. The

MNF, however, is cash-constrained and has to borrow at a rate over and above the riskless

rate of interest to cover any interim losses that may arise from its initial futures position.

Such a borrowing constraint makes hedging with the currency futures contracts costly,

thereby inducing the MNF to adopt an under-hedge as its optimal initial futures position.

This is in line with the findings by Korn (2004) and Adam-Müller and Panaretou (2009).

Our results thus suggest that the source of liquidity risk plays a pivotal role in determining

the optimal futures hedging strategies for MNFs facing exchange rate uncertainty.

3Positive autocorrelations in futures exchange rates may also be explained in a partial adjustment model
wherein central banks lean against the wind with their interventions.
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The rest of the paper is organized as follows. Section 2 describes the two-period model of

Lien and Wong (2005) in which a risk-averse MNF facing both liquidity risk and exchange

rate risk. Section 3 characterizes the MNF’s optimal futures position for an exogenous

liquidity constraint. Section 4 goes on to endogenize the choice of optimal timing for the

termination of the MNF’s futures hedge program. Section 5 offers some numerical examples.

Section 6 examines an alternative setting in which the MNF can adjust its futures position

in the interim period. The final section concludes.

2. The model

Consider the two-period model of Lien and Wong (2005). A multinational firm (MNF),

which lasts for two periods with three dates (indexed by t = 0, 1, and 2), has an operation

domiciled in a foreign country. Interest rates in both periods are known at t = 0 with

certainty. To simplify notation, we henceforth suppress the interest factors by compounding

all cash flows to their future values at t = 2.

To begin, the MNF expects to receive a net cash inflow, x, from its foreign operation

at t = 2, where x is denominated in the foreign currency. While the actual amount of x is

known at t = 0, the MNF does not know the then prevailing spot exchange rate at t = 2,

which is denoted by e2 and is expressed in units of the domestic currency per unit of the

foreign currency. The MNF is risk averse and possesses a von Neumann-Morgenstern utility

function, u(π), defined over its domestic currency income at t = 2, π, with u′(π) > 0 and

u′′(π) < 0.4

To hedge its exposure to the exchange rate risk, the MNF trades infinitely divisible

currency futures contracts at t = 0. We follow Lien and Wong (2005) to restrict the MNF

to trade the currency futures contracts at t = 0 only. In Section 6, we consider an alternative

setting in which futures positions can be adjusted at t = 1 through trading at that time as

in Korn (2004) and Adam-Müller and Panaretou (2009).

Each of the currency futures contracts calls for delivery of the domestic currency against

4The risk-averse behavior of the MNF can be motivated by managerial risk aversion (Stulz, 1984), cor-
porate taxes (Smith and Stulz, 1985), costs of financial distress (Smith and Stulz, 1985), and capital market
imperfections (Froot, Scharfstein, and Stein, 1993; Stulz, 1990). See Tufano (1996) for evidence that man-
agerial risk aversion is a rationale for corporate risk management in the gold mining industry.
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the foreign currency at t = 2, and is marked to market at t = 1. Let ft be the futures

exchange rate at date t (t = 0, 1, and 2) expressed in units of the domestic currency per

unit of the foreign currency. While the initial futures exchange rate, f0, is predetermined

at t = 0, the other futures exchange rates, f1 and f2, are regarded as positive random

variables. By convergence, the futures exchange rate at t = 2 must be set equal to the spot

exchange rate at that time. Thus, we have f2 = e2.

In contrast to Lien and Wong (2005), we model the futures exchange rate dynamics by

assuming that ft = ft−1 + εt for t = 1 and 2, where ε2 = ρε1 + δ, ρ is a scalar, and ε1

and δ are two random variables independent of each other. To focus on the MNF’s hedging

motive, vis-à-vis its speculative motive, we further assume that ε1 and δ have means of zero

so that the initial futures exchange rate, f0, is unbiased and set equal to the unconditional

expected value of the random spot exchange rate at t = 2, e2. The futures exchange rate

dynamics as such is a first-order positive or negative autoregression, depending on whether

ρ is positive or negative, respectively (see also Wong, 2008). If ρ = 0, the futures exchange

rate dynamics becomes a random walk, which is the case considered by Lien and Wong

(2005).

Let h be the number of the currency futures contracts sold (purchased if negative) by

the MNF at t = 0. Due to marking to market at t = 1, the MNF enjoys a gain (or suffers a

loss if negative) of (f0−f1)h from its futures position, h, at that time. The MNF is liquidity

constrained in that it is obliged to prematurely liquidate its short futures position on which

the loss incurred at t = 1 exceeds a predetermined threshold level, k, where 0 < k < ∞.

Otherwise, the MNF holds its futures position until t = 2. The MNF’s random domestic

currency income at t = 2 is therefore given by

π =











e2x + (f0 − f2)h if (f1 − f0)h ≤ k,

e2x + (f0 − f1)h if (f1 − f0)h > k.
(1)

While the threshold level, k, is taken as given in the base scenario, we shall relax this

assumption in Section 4 by allowing the MNF to choose the optimal values for h and k

simultaneously.

Anticipating the liquidity constraint at t = 1, the MNF chooses its futures position, h,

at t = 0 so as to maximize the expected utility of its random domestic currency income at
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t = 2. In Appendix A, we have shown that the MNF optimally opts for a short futures

position. The MNF’s ex-ante decision problem can therefore be stated as

max
h>0

∫ k/h

−∞

Eδ{u[(f0 + ε1 + ρε1 + δ)x − (ε1 + ρε1 + δ)h]}g(ε1) dε1

+

∫ ∞

k/h
Eδ{u[(f0 + ε1 + ρε1 + δ)x − ε1h]}g(ε1) dε1, (2)

where we have used Eq. (1), Eδ(·) is the expectation operator with respect to the probability

density function of δ, and g(ε1) is the probability density function of ε1 with g(ε1) > 0 for

all ε1. We say that the MNF’s short futures position is an under-hedge, a full-hedge, or an

over-hedge, if, and only if, h < x, h = x, or h > x, respectively.

Using Leibniz’s rule, the first-order condition for program (2) is given by

−

∫ k/h∗

−∞

Eδ{u
′[f0x + (ε1 + ρε1 + δ)(x − h∗)](ε1 + ρε1 + δ)}g(ε1) dε1

−

∫ ∞

k/h∗

Eδ{u
′[(f0 + ρε1 + δ)x + ε1(x− h∗)]}ε1g(ε1) dε1

+Eδ{u[(f0 + δ)x + (1 + ρ)xk/h∗ − k]

−u[f0x + (1 + ρ)(x− h∗)k/h∗ + δ(x − h∗)]}g(k/h∗)k/h∗2 = 0, (3)

where h∗ is the MNF’s optimal short futures position. We assume that the second-order

condition for program (2) is satisfied.5

3. Optimal futures hedging

As a benchmark, we consider first the case that the liquidity constraint does not exist,

which is tantamount to setting k = ∞. In this benchmark case, Eq. (3) becomes

∫ ∞

−∞

Eδ{u
′[f0x + (ε1 + ρε1 + δ)(x− h∗)](ε1 + ρε1 + δ)}g(ε1) dε1 = 0. (4)

5We numerically verify in Section 5 that this assumption is valid.
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If h∗ = x, the left-hand side of Eq. (4) reduces to

(1 + ρ)u′(f0x)

∫ ∞

−∞

ε1g(ε1) dε1 = 0, (5)

where we have used the fact that ε1 and δ have means of zero. It follows from Eqs. (4)

and (5) that h∗ = x is indeed the MNF’s optimal futures position when k = ∞, thereby

invoking our first proposition.

Proposition 1. If the risk-averse MNF faces no liquidity constraints, its optimal short

futures position, h∗, is a full-hedge.

The intuition of Proposition 1 is as follows. When k = ∞, the liquidity unconstrained

MNF’s ex-ante decision problem is given by

max
h>0

∫ ∞

−∞

Eδ{u[f0x + (ε1 + ρε1 + δ)(x − h)]}g(ε1) dε1. (6)

It is evident from program (6) that a full-hedge, i.e., h = x, eliminates all the exchange rate

risk. Thus, the liquidity unconstrained MNF, being risk averse, finds it optimal to opt for

a full-hedge. Proposition 1 is analogous with the full-hedging theorem of Danthine (1978),

Feder et al. (1980), and Holthausen (1979).6

We now resume the original case that the liquidity constraint is present, i.e., 0 < k < ∞.

Let L(ρ) be the left-hand side of Eq. (3) evaluated at h∗ = x:

L(ρ) = −(1 + ρ)u′(f0x)

∫ k/x

−∞

ε1g(ε1) dε1

−

∫

∞

k/x
Eδ{u

′[(f0 + ρε1 + δ)x]}ε1g(ε1) dε1

+

{

Eδ{u[(f0 + δ)x + ρk]} − u(f0x)

}

g(k/x)k/x2. (7)

If L(ρ) > (<) 0, it follows from Eq. (3) and the second-order condition for program (2)

that h∗ > (<) x.

6See also Adam-Müller (1997), Broll (1992), and Broll and Zilcha (1992) for the case of risk-averse MNFs.
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When there are multiple sources of uncertainty, it is well-known that the Arrow-Pratt

theory of risk aversion is usually too weak to yield intuitively appealing results (Gollier,

2001). Kimball (1990, 1993) defines u′′′(π) ≥ 0 as prudence, which measures the propensity

to prepare and forearm oneself under uncertainty, vis-à-vis risk aversion that is how much

one dislikes uncertainty and would turn away from it if one could. As shown by Leland

(1968), Drèze and Modigliani (1972), and Kimball (1990), prudence is both necessary and

sufficient to induce precautionary saving. Moreover, prudence is implied by decreasing

absolute risk aversion, which is instrumental in yielding many intuitive comparative statics

under uncertainty (Gollier, 2001). The following proposition shows that prudence is indeed

useful in unambiguously identifying the sign of L(ρ).7

Proposition 2. If the risk-averse MNF faces an exogenous liquidity constraint and is

prudent, its optimal short futures position, h∗, is an under-hedge, a full-hedge, or an over-

hedge, depending on whether the autocorrelation coefficient, ρ, is less than, equal to, or

greater than ρ∗, respectively, where ρ∗ > 0 uniquely solves L(ρ∗) = 0.

Proof. See Appendix B. 2

To see the intuition of Proposition 2, we refer to Eq. (1). If the liquidity constrained

MNF adopts a full-hedge, i.e., h = x, its random domestic currency income at t = 2 becomes

π =











f0x if ε1 ≤ k/x,

(f0 + ρε1 + δ)x if ε1 > k/x.
(8)

Eq. (8) implies that a full-hedge is not optimal due to the residual exchange rate risk,

(ρε1 + δ)x, that arises from the premature liquidation of the futures position at t = 1.

According to Kimball (1990, 1993), the prudent MNF is more sensitive to low realizations

of its random domestic currency income at t = 2 than to high ones. If ρ is sufficiently positive

such that ρε1 + δ > 0 most of the time for all ε1 > k/x, the low realizations of the MNF’s

random domestic currency income at t = 2 occur when the futures position is continued

until t = 2. Thus, to avoid these realizations the prudent MNF has incentives to short

7It should be evident that the results of Proposition 2 remain intact when the liquidity constrained MNF
has a quadratic utility function, i.e., u′′′(π) ≡ 0.
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more of the currency futures contracts, i.e., h > x, so as to reduce the interval, (−∞, k/h],

over which the the futures position is continued until t = 2. In this case, the prudent MNF

optimally opts for an over-hedge, i.e., h∗ > x. On the other hand, if ρ is not too positive

such that ρε1 + δ < 0 most of the time for all ε1 > k/x, the low realizations of the MNF’s

random domestic currency income at t = 2 occur when the futures position is prematurely

liquidated at t = 1. Thus, to avoid these realizations the prudent MNF has incentives to

short less of the currency futures contracts, i.e., h < x, so as to shrink the interval, (k/h,∞),

over which the premature liquidation of the futures position prevails at t = 1. In this case,

the prudent MNF optimally adopts an under-hedge, i.e., h∗ < x. Proposition 2 shows that

the MNF’s optimal futures position, h∗, is continuous in the autocorrelation coefficient,

ρ, such that there is a unique critical value, ρ∗ > 0, below (above) which under-hedging

(over-hedging) is optimal.

Lien and Wong (2005) have thoroughly analyzed the random walk case of ρ = 0. They

show that an under-hedge is optimal for prudent MNFs under exogenous liquidity con-

straints. Proposition 2 generalizes their results to the case of autocorrelated futures ex-

change rates. Specifically, if the autocorrelation of the disturbances across periods is not

too positive, Proposition 2 shows that an under-hedge remains optimal for these MNFs.

Otherwise, an over-hedge is called for in response to the exogenous liquidity constraints.

4. Optimal endogenous liquidation

In this section, we allow the MNF to choose a short futures position, h, and a liquidation

threshold, k, simultaneously so as to maximize the expected utility of its random domestic

currency income at t = 2. Thus, we formulate the MNF’s ex-ante decision problem in an

optimal stopping approach:

max
h>0,k>0

∫ k/h

−∞

Eδ{u[(f0 + ε1 + ρε1 + δ)x − (ε1 + ρε1 + δ)h]}g(ε1) dε1

+

∫ ∞

k/h
Eδ{u[(f0 + ε1 + ρε1 + δ)x − ε1h]}g(ε1) dε1. (9)

Let h∗∗ and k∗∗ be the optimal futures position and the optimal liquidation threshold,

respectively. The following proposition characterizes k∗∗ for different values of the autocor-
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relation coefficient, ρ.

Proposition 3. Suppose that the risk-averse MNF can choose a threshold level, k, to

commit to prematurely liquidating its futures position at t = 1. The MNF’s optimal liq-

uidation threshold, k∗∗, is finite (infinite) if the autocorrelation coefficient, ρ, is positive

(non-positive).

Proof. See Appendix C. 2

The intuition of Proposition 3 is as follows. If the MNF chooses k = ∞, risk sharing

is optimal at t = 0 because the MNF can completely eliminate all the exchange rate risk.

However, doing so is not optimal at t = 1, especially when ρ > 0. To see this, note that

for any given k < ∞ the MNF prematurely liquidates its short futures position at t = 1 for

all ε1 ∈ (k/h,∞). Conditional on premature liquidation, the expected value of f2 is equal

to f1 + ρε1, which is greater (not greater) than f1 when ρ > (≤) 0. Thus, it is optimal

at t = 1 for the MNF to liquidate its short futures position prematurely in order to limit

further losses if ρ > 0. In this case, the MNF chooses the optimal threshold level, k∗∗, to be

finite so as to strike a balance between optimal risk sharing at t = 0 and at t = 1. If ρ ≤ 0,

premature liquidation is never optimal at t = 1 and thus the MNF chooses k∗∗ = ∞.

When ρ ≤ 0, Proposition 3 implies that the MNF never liquidates its short futures

position at t = 1. In this case, it follows from Proposition 1 that the MNF finds a full-hedge

optimal. When ρ > 0, Proposition 3 implies that the MNF optimally liquidates its short

futures position at t = 1 whenever the loss at that time exceeds k∗∗. From Proposition 2,

we know that either an under-hedge, a full-hedge, or an over-hedge can be optimal for the

MNF facing an exogenous liquidity constraint, depending on whether the actual value of ρ

is below, equal to, or above the critical value, ρ∗ > 0, respectively. However, since ρ∗ is a

function of k while k∗∗ is a function of ρ, we cannot directly apply the results of Proposition

2 to infer the MNF’s optimal futures position in this case.

To characterize h∗∗ when ρ > 0, we formulate the MNF’s ex-ante decision problem as a

two-stage optimization problem. In the first stage, we derive the MNF’s optimal liquidation
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threshold, k(h), for a given short futures position, h:

k(h) = argmax
k>0

∫ k/h

−∞

Eδ{u[(f0 + ε1 + ρε1 + δ)x − (ε1 + ρε1 + δ)h]}g(ε1) dε1

+

∫ ∞

k/h
Eδ{u[(f0 + ε1 + ρε1 + δ)x − ε1h]}g(ε1) dε1. (10)

Using Leibniz’s rule, the first-order condition for the right-hand side of Eq. (10) is given by

Eδ{u[f0x + (1 + ρ)k(h)(x/h− 1) + δ(x − h)]}

−Eδ{u[f0x + ρk(h)x/h + δx + k(h)(x/h− 1)]} = 0. (11)

In the second stage, we solve the MNF’s optimal short futures position, h∗∗, taking the

liquidation threshold, k(h), that solves Eq. (11) as given. The complete solution is thus

h∗∗ and k∗∗ = k(h∗∗).

The second-stage optimization problem is given by

max
h>0

G(h) =

∫ k(h)/h

−∞

Eδ{u[(f0 + ε1 + ρε1 + δ)x − (ε1 + ρε1 + δ)h]}g(ε1) dε1

+

∫

∞

k(h)/h
Eδ{u[(f0 + ε1 + ρε1 + δ)x − ε1h]}g(ε1) dε1. (12)

Differentiating G(h) with respect to h and evaluating the resulting derivative at h = x

yields

G′(x) = −(1 + ρ)u′(f0x)

∫ k(x)/x

−∞

ε1g(ε1) dε1

−

∫

∞

k(x)/x
Eδ{u

′[(f0 + ρε1 + δ)x]}ε1g(ε1) dε1, (13)

where we have used Eq. (11) with h = x. We assume that G(h) is strictly concave so that

h∗∗ > (<) x if G′(x) > (<) 0.8 The following proposition offers a sufficient condition under

which G′(x) > 0.

8We numerically verify in Section 5 that this assumption is valid.
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Proposition 4. Suppose that the autocorrelation coefficient, ρ, is positive and that the

risk-averse MNF can choose a threshold level, k, to commit to prematurely liquidating its

futures position at t = 1. If

ρ ≥
Eδ{u

′[(f0 + δ)x]}

u′(f0x)
− 1, (14)

the MNF’s optimal short futures position, h∗∗, is an over-hedge.

Proof. See Appendix D. 2

When the MNF’s utility function is quadratic, i.e., u′′′(π) ≡ 0, we have Eδ{u
′[(f0 +

δ)x]} = u′(f0x) since Eδ(δ) = 0. In this case, the right-hand side of condition (14) vanishes

and thus condition (14) is satisfied for all ρ > 0. When the MNF is prudent, i.e., u′′′(π) ≥ 0,

it follows from Eδ(δ) = 0 and Jensen’s inequality that Eδ{u
′[(f0 + δ)x]} ≥ u′(f0x) and thus

the right-hand side of condition (14) is strictly positive. Since condition (14) is sufficient

but not necessary for the optimality of an over-hedge, it may still very well be the case that

the prudent MNF would optimally opt for an over-hedge for all ρ > 0.

5. Numerical examples

From the previous section, we know that we have to rely on numerical solutions to the

model in order to characterize h∗∗ for the prudent MNF. Doing so also allows us to quantify

the optimal liquidation threshold, k∗∗.

To conduct the numerical analysis, we assume that the MNF has a negative exponential

utility function: u(π) = −e−γπ, where γ > 0 is the constant Arrow-Pratt measure of

absolute risk aversion. We further assume that ε1 and δ are normally distributed with

means of zero and variances of 0.01. For normalization, we set x = f0 = 1.

In Table 1, we set γ = 2 and report the optimal short futures position, h∗, and the

critical autocorrelation coefficient, ρ∗, for different values of k and ρ. As is evident from

Table 1, h∗ < (>) x = 1 when ρ < (>) ρ∗, in accord with Proposition 2. Table 1 also reveals

that h∗ moves further away from a full-hedge as k decreases. That is, when the exogenous

liquidity constraint becomes more severe, the MNF has to deviate more from full-hedging
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so as to better cope with the exchange rate risk and the liquidity risk simultaneously.

(Insert Table 1 here.)

Table 2 reports the optimal short futures position, h∗∗, and the optimal liquidation

threshold, k∗∗, for different values of γ and ρ. Table 2 shows that a full-hedge is optimal if ρ

is small, or else an over-hedge is optimal, implying that an under-hedge is never used.9 This

suggests that condition (14) in Proposition 4 is a rather weak condition. It is also evident

from Table 2 that k∗∗ decreases as either ρ increases or γ decreases. That is, the MNF is

more willing to commit itself to prematurely liquidating its short futures position at t = 1

when either premature liquidation is indeed profitable at t = 1, or the MNF becomes less

risk averse and thus does not mind to take on excessive risk.

(Insert Table 2 here.)

6. Optimal futures hedging under borrowing constraints

In this section, we follow Korn (2004) and Adam-Müller and Panaretou (2009) to con-

sider an alternative setting in which the MNF is allowed to adjust its futures position at

t = 1, albeit subject to a borrowing constraint. Let h0 and h1 be the numbers of the

currency futures contracts sold (purchased if negative) by the MNF at t = 0 and t = 1,

respectively, where all the contracts mature at t = 2. The MNF has no cash at t = 1 to pay

any interim losses that may arise from its futures position, h0, due to marking to market

at that time. The MNF has to borrow at a rate that contains a constant mark-up, r > 0,

over and above the riskless rate of interest. The MNF’s random domestic currency income

at t = 2 is therefore given by

π = e2x + (f0 − f2)h0 + (f1 − f2)h1 + r min[(f0 − f1)h0, 0]. (15)

We solve the MNF’s optimal futures positions by using backward induction.

Consider first that the decision problem of the MNF at t = 1. Taking the the futures

position at t = 0, h0, and the realization of the futures exchange rate at t = 1, f1, as given,

9Indeed, Wong (2008) shows that h∗∗
≥ x for all ρ > 0 under constant absolute risk aversion.
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the MNF chooses the futures position at t = 1, h1, so as to maximize the expected utility

of its domestic currency income at t = 2:

max
h1

Eδ{u[(f0 + ε1 + ρε1 + δ)x − ε1h0 − (ρε1 + δ)(h0 + h1) + r min(−ε1h0, 0)]}. (16)

The first-order condition for program (16) is given by

Eδ{u
′[(f0 + ε1 + ρε1 + δ)x − ε1h0 − (ρε1 + δ)(h0 + h∗

1) + r min(−ε1h0, 0)]}ρε1

+Covδ{u
′[(f0+ε1 +ρε1 +δ)x−ε1h0−(ρε1+δ)(h0 +h∗

1)+r min(−ε1h0, 0)], δ} = 0,(17)

where h∗
1 is the optimal futures position at t = 1, and we have used the property of the

covariance operator, Covδ(·, ·), with respect to the probability density function of δ.10 Since

u′′(π) < 0, it follows immediately from Eq. (17) that h∗
1 is smaller than, equal to, or larger

than x − h0, depending on whether ρε1 is positive, zero, or negative, respectively.

Anticipating that the optimal futures position at t = 1 is given by h∗
1, the MNF chooses

h0 at t = 0 so as to maximize the expected utility of its domestic currency income at t = 2:

max
h0

∫ ∞

−∞

Eδ{u[(f0 + ε1 + ρε1 + δ)x − ε1h0

−(ρε1 + δ)(h0 + h∗
1) + r min(−ε1h0, 0)]}g(ε1) dε1. (18)

Since h∗
1 depends not only on h0 but also on ε1 when ρ 6= 0, program (18) can be solved

analytically only in the case that ρ = 0. When ρ = 0, we have h∗
1 = x−h0 so that program

(18) becomes

max
h0

∫ ∞

−∞

u[f0x + ε1(x − h0) + r min(−ε1h0, 0)]g(ε1) dε1. (19)

Differentiating the objective function in program (19) with respect to h0, and evaluating

the resulting derivative at h0 = x yields

∫ ∞

−∞

u′[f0x + r min(−ε1x, 0)][−ε1 + r min(−ε1, 0)]g(ε1) dε1

10For any two random variables, x and y, Covδ(x, y) = Eδ(xy) − Eδ(x)Eδ(y).
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= −

∫ ∞

−∞

u′[f0x + r min(−ε1x, 0)]ε1g(ε1) dε1

−r

∫ ∞

0
u′[f0x + r min(−ε1x, 0)]ε1g(ε1) dε1. (20)

The second term on the right-hand side of Eq. (20) is negative. The first term is the

negative of the covariance between u′[f0x + r min(−ε1x, 0)] and ε1, which is also negative

because u′[f0x + r min(−ε1x, 0)] is weakly increasing ε1 given that u′′(π) < 0. Hence, by

the strict concavity of the objective function of program (19), we conclude that the optimal

futures position at t = 0, h∗
0, is less than x, when ρ = 0. This under-hedging result is

consistent with the findings by Korn (2004) and Adam-Müller and Panaretou (2009) who

restrict their attention to the case that ρ = 0.

To gain more insight into the characterization of h∗
0 in the general case that ρ 6= 0, we

have to rely on numerical analysis. As in Section 5, the MNF has the negative exponential

utility function, u(π) = −e−2π. We assume that ε1 and δ are normally distributed with

means of zero and variances of 0.01. For normalization, we set x = f0 = 1. Table 3 reports

h∗
0 for different values of the mark-up rate, r, and the autocorrelation coefficient, ρ.

(Insert Table 3 here.)

As is evident from Table 3, the optimal futures position at t = 0 is always an under-

hedge, i.e., 0 < h∗
0 < x = 1, for all values of ρ such that h∗

0 reaches the maximum at ρ = 0.

The intuition of these results is as follows. The borrowing constraint makes hedging with

the currency futures contracts at t = 0 costly. To limit the potential borrowing costs to

be incurred at t = 1, the MNF is induced to sell short a smaller number of the currency

futures contracts at t = 0. This is in line with the findings in Table 3 that h∗
0 decreases

as the mark-up rate, r, increases. The MNF finds the adjustment of its futures position at

t = 1 more profitable if the futures exchange rates are more predictable, i.e., if ρ is either

more positive or more negative. Hence, the MNF optimally reduces its futures position at

t = 0 as ρ becomes either more positive or more negative, thereby rendering h∗
0 to attain a

maximum at ρ = 0.

In the setting wherein the MNF is prohibited from adjusting its futures position at t = 1,

we know from Proposition 2 that an over-hedge at t = 0 is optimal should the autocor-
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relation coefficient, ρ, be sufficiently positive, which is in sharp contrast to the findings in

Table 3. This suggests that the source of liquidity risk plays a pivotal role in determining

the optimal futures hedging strategies for MNFs facing exchange rate uncertainty.

7. Conclusion

In this paper, we have examined the optimal design of a futures hedge program for a risk-

averse multinational firm (MNF) under exchange rate uncertainty. To hedge its exchange

rate risk exposure, the MNF trades unbiased currency futures contracts that are marked to

market and require interim cash settlement of gains and losses. As in Lien and Wong (2005),

the MNF is liquidity constrained in that it is obliged to prematurely liquidate its futures

position on which the interim loss incurred exceeds a threshold level (i.e., the liquidation

threshold).

When the liquidation threshold is exogenously given, we have shown that the MNF

optimally opts for an under-hedge (an over-hedge) should the futures exchange rates be not

too (sufficiently) positively autocorrelated. When the liquidation threshold is endogenously

determined, we have shown that the MNF voluntarily chooses to prematurely liquidate

its short futures position only if the futures exchange rates are positively autocorrelated.

Since a positive autocorrelation implies that a loss from a futures position tends to be

followed by another loss from the same position, the MNF finds premature liquidation of its

futures position to be ex-post optimal. Thus, the optimal liquidation threshold is chosen by

the MNF to strike a balance between ex-ante and ex-post efficient risk sharing. However,

in the case that the futures exchange rates are uncorrelated or negatively autocorrelated,

premature liquidation of the futures position is never ex-post optimal. The MNF as such

prefers not to commit to any finite liquidation thresholds.

Acknowledgements

We would like to thank Axel Adam-Müller, Udo Broll, Manuchehr Shahrokhi (the ed-

itor), and an anonymous referee for their helpful comments and suggestions. The usual

disclaimer applies.



R. Meng, K.P. Wong / Global Finance Journal 21 (2010) 17

Appendix A

The MNF’s ex-ante decision problem is to choose a futures position, h, so as to maximize

the expected utility of its random domestic currency income at t = 2, EU :

∫ k/h

−∞

Eδ{u[(f0 + ε1 + ρε1 + δ)x − (ε1 + ρε1 + δ)h]}g(ε1) dε1

+

∫

∞

k/h
Eδ{u[(f0 + ε1 + ρε1 + δ)x − ε1h]}g(ε1) dε1 (21)

if h > 0, and

∫ k/h

−∞

Eδ{u[(f0 + ε1 + ρε1 + δ)x − ε1h]}g(ε1) dε1

+

∫ ∞

k/h
Eδ{u[(f0 + ε1 + ρε1 + δ)x − (ε1 + ρε1 + δ)h]}g(ε1) dε1 (22)

if h < 0. In order to solve the MNF’s optimal futures position, h∗, we need to know which

equation, Eq. (21) or Eq. (22), contains the solution.

Consider first the case that h > 0. Using Leibniz’s rule to partially differentiate EU

as defined in Eq. (21) with respect to h and evaluating the resulting derivative at h → 0+

yields

lim
h→0+

∂EU

∂h
= −

∫ ∞

−∞

Eδ{u
′[(f0 + ε1 + ρε1 + δ)x](ε1 + ρε1 + δ)}g(ε1) dε1, (23)

where we have used the fact that limh→0+ g(k/h) = 0. Since ε1 and δ has means of zero,

the right-hand side of Eq. (23) is simply the negative of the covariance between u′[(f0 +

ε1 + ρε1 + δ)x] and ε1 + ρε1 + δ with respect to the joint probability density function of ε1

and δ. Since u′′(π) < 0, we have limh→0+ ∂EU/∂h > 0.

Now, consider the case that h < 0. Using Leibniz’s rule to partially differentiate EU

as defined in Eq. (22) with respect to h and evaluating the resulting derivative at h → 0−

yields

lim
h→0−

∂EU

∂h
= −

∫

∞

−∞

Eδ{u
′[(f0 + ε1 + ρε1 + δ)x](ε1 + ρε1 + δ)}g(ε1) dε1, (24)



R. Meng, K.P. Wong / Global Finance Journal 21 (2010) 18

where we have used the fact that limh→0− g(k/h) = 0. Inspection of Eqs. (23) and (24)

reveals that limh→0+ ∂EU/∂h = limh→0− ∂EU/∂h > 0. Since EU as defined in either Eq.

(21) or Eq. (22) is strictly concave, the MNF’s optimal futures position, h∗, must be a short

position, i.e., h∗ > 0.

Appendix B

Differentiating L(ρ) with respect to ρ yields

L′(ρ) = −u′(f0x)

∫ k/x

−∞

ε1g(ε1) dε1 −

∫ ∞

k/x
Eδ{u

′′[(f0 + ρε1 + δ)x]}ε2
1xg(ε1) dε1

+Eδ{u
′[(f0 + δ)x + ρk]}g(k/x)k2/x2. (25)

Since ε1 has a mean of zero, the first term on the right-hand side of Eq. (25) is positive.

The other two terms are also positive because u′(π) > 0 and u′′(π) < 0. Thus, we have

L′(ρ) > 0 for all ρ.

Using the fact that ε1 has a mean of zero, we can write Eq. (7) as

L(ρ) =

∫ ∞

k/x

{

(1 + ρ)u′(f0x) − Eδ{u
′[(f0 + ρε1 + δ)x]}

}

ε1g(ε1) dε1

+

{

Eδ{u[(f0 + δ)x + ρk]} − u(f0x)

}

g(k/x)k/x2. (26)

Evaluating Eq. (26) at ρ = 0 yields

L(0) =

{

u′(f0x)− Eδ{u
′[(f0 + δ)x]}

}
∫ ∞

k/x
ε1g(ε1) dε1

+

{

Eδ{u[(f0 + δ)x]} − u(f0x)

}

g(k/x)k/x2. (27)

Since u′′(π) < 0 and Eδ(δ) = 0, Jensen’s inequality implies that Eδ{u[(f0 + δ)x]} < u(f0x).

The second term on the right-hand side of Eq. (27) is negative. Since u′′′(π) ≥ 0, it follows

from Eδ(δ) = 0 and Jensen’s inequality that Eδ{u
′[(f0 + δ)x]} ≥ u′(f0x). The first term on

the right-hand side of Eq. (27) is non-positive and thus L(0) < 0. Now, consider the case
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that ρ is sufficiently large such that (1 + ρ)u′(f0x) > Eδ{u
′[(f0 + ρε1 + δ)x]} for all ε1 > 0

and u(f0x) < Eδ{u[(f0 + δ)x + ρk]}. Thus, for ρ sufficiently large, it follows from Eq. (26)

that L(ρ) > 0.

Since L(0) < 0, L(ρ) > 0 for ρ sufficiently large, and L′(ρ) > 0, there must exist a

unique point, ρ∗, that solves L(ρ∗) = 0 and ρ∗ > 0. Thus, for all ρ < (>) ρ∗, we have

L(ρ) < (>) 0. It then follows from Eq. (3) and the second-order condition for program (2)

that h∗ < (>) x for all ρ < (>) ρ∗. This completes the proof of Proposition 2.

Appendix C

To facilitate the exposition, we fix h = x and let the MNF choose k to solve the following

problem:

max
k≥0

F (k) = u(f0x)

∫ k/x

−∞

g(ε1) dε1 +

∫ ∞

k/x
Eδ{u[(f0 + ρε1 + δ)x]}g(ε1) dε1. (28)

Differentiating F (k) with respect to k yields

F ′(k) =

{

u(f0x)− Eδ{u[(f0 + δ)x + ρk]}

}

g(k/x)/x. (29)

Denote k∗ as the solution to program (28).

Consider first the case that ρ ≤ 0. In this case, we have u(f0x) ≥ u(f0x + ρk) >

Eδ{u[(f0 + δ)x + ρk]}, where the second inequality follows from u′′(π) < 0, Eδ(δ) = 0, and

Jensen’s inequality. Eq. (29) then implies that F ′(k) > 0 for all k > 0 and thus k∗ = ∞.

From Proposition 1, we know that h∗ = x if k = ∞. It thus follows immediately from

k∗ = ∞ that k∗∗ = ∞ and h∗∗ = x when ρ ≤ 0.

Now consider the case that ρ > 0. Note that Eδ{u[(f0+δ)x+ρk]} is increasing in k since

u′(π) > 0 and ρ > 0. When k → 0+, it follows from u′′(π) < 0, Eδ(δ) = 0, and Jensen’s

inequality that Eδ{u[(f0 + δ)x + ρk]} < u(f0x). On the other hand, when k → ∞, we have

Eδ{u[(f0 + δ)x + ρk]} > u(f0x). Thus, there exists a unique point, k∗ ∈ (0,∞), such that

F ′(k∗) = 0, as is evident from Eq. (29). In this case, it must be true that k∗∗ < ∞. To see

this, suppose the contrary in that k∗∗ = ∞. Then, from Proposition 1, we have h∗∗ = x,

which would imply k∗ = k∗∗ = ∞, a contradiction to k∗ < ∞. Hence, we have k∗∗ < ∞

when ρ > 0. This completes the proof of Proposition 3.
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Appendix D

Using the fact that ε1 has a mean of zero, we can write Eq. (13) as

G′(x) =

∫ ∞

k∗/x

{

(1 + ρ)u′(f0x) − Eδ{u
′[(f0 + ρε1 + δ)x]}

}

ε1g(ε1) dε1. (30)

For all ε1 > k∗/x, risk aversion implies that Eδ{u
′[(f0+ρε1 +δ)x]} < Eδ{u

′[(f0+δ)x]} since

ρ > 0. It then follows from condition (14) that (1 + ρ)u′(f0x) > Eδ{u
′[(f0 + ρε1 + δ)x]} for

all ε1 > k∗/x. From Eq. (30), G′(x) > 0 and thus h∗∗ > x.
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Table 1

Optimal futures positions

k = 0.05 k = 0.1 k = 0.15 k = 0.2

ρ∗ h∗ ρ∗ h∗ ρ∗ h∗ ρ∗ h∗

ρ = 0.01 0.9381 0.9337 0.9566 0.9787

ρ = 0.03 0.9728 0.9659 0.9801 0.9906

0.0460 1.0000 0.0514 1.0000 0.0462 1.0000 0.0395 1.0000

ρ = 0.07 1.0391 1.0286 1.0287 1.0225

ρ = 0.09 1.0707 1.0592 1.0538 1.0383

Notes: The multinational firm has a negative exponential utility function: u(π) = −e−2π.

The underlying random variables, ε1 and δ, are normally distributed with means of zero and

variances of 0.01. Both the foreign currency cash flow, x, and the initial futures exchange

rate, f0, are normalized to unity. This table reports the optimal short futures position,

h∗, and the critical autocorrelation coefficient, ρ∗, for different values of the liquidation

threshold, k, and the autocorrelation coefficient, ρ.
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Table 2

Optimal futures positions and liquidation thresholds

γ = 1 γ = 2 γ = 3 γ = 4

h∗∗ k∗∗ h∗∗ k∗∗ h∗∗ k∗∗ h∗∗ k∗∗

ρ = 0.01 1.0000 0.5000 1.0000 0.9884 1.0000 1.4852 1.0000 1.4998

ρ = 0.02 1.0000 0.2494 1.0000 0.5000 1.0000 0.7481 1.0000 0.9901

ρ = 0.05 1.0726 0.1000 1.0070 0.1999 1.0000 0.2970 1.0000 0.3990

ρ = 0.1 1.2313 0.0473 1.0738 0.0997 1.0188 0.1485 1.0073 0.2000

ρ = 0.2 1.5103 0.0185 1.2385 0.0472 1.1349 0.0737 1.1031 0.0990

ρ = 0.5 2.1670 0.0036 1.6292 0.0121 1.4354 0.0243 1.3294 0.0357

Notes: The multinational firm has a negative exponential utility function: u(π) = −e−γπ,

where γ is a positive constant. The underlying random variables, ε1 and δ, are normally

distributed with means of zero and variances of 0.01. Both the foreign currency cash flow,

x, and the initial futures exchange rate, f0, are normalized to unity. This table reports the

optimal short futures position, h∗∗, and the optimal liquidation threshold, k∗∗, for different

values of the risk aversion coefficient, γ, and the autocorrelation coefficient, ρ.
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Table 3

Optimal futures positions

r = 0.04 r = 0.06 r = 0.08 r = 0.1

h∗
0 h∗

0 h∗
0 h∗

0

ρ = −0.5 0.9408 0.9126 0.8854 0.1954

ρ = −0.2 0.9540 0.9321 0.9109 0.3553

ρ = −0.1 0.9555 0.9343 0.9137 0.3726

ρ = 0 0.9560 0.9350 0.9146 0.3780

ρ = 0.1 0.9555 0.9343 0.9137 0.3726

ρ = 0.2 0.9540 0.9321 0.9109 0.3553

ρ = 0.5 0.9408 0.9126 0.8854 0.1954

Notes: The multinational firm has a negative exponential utility function: u(π) = −e−2π.

The underlying random variables, ε1 and δ, are normally distributed with means of zero and

variances of 0.01. Both the foreign currency cash flow, x, and the initial futures exchange

rate, f0, are normalized to unity. This table reports the optimal short futures position at

t = 0, h∗
1, for different values of the mark-up rate, r, and the autocorrelation coefficient, ρ.


