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Abstract

This paper examines the investment-uncertainty relationship in a canonical real options model.
We show that the critical lump-sum payoff of a project that triggers the exercise of the investment
option exhibits a U-shaped pattern against the volatility of the project. This is driven by two
opposing effects of an increase in the volatility of the project: (i) the usual positive effect on option
value, and (ii) a negative effect on option value due to the upward adjustment in the discount rate.
We further show that such a U-shaped pattern is inherited by the expected time to exercise the
investment option. Thus, for relatively safe projects, greater uncertainty may in fact shorten the
expected exercise time and thereby enhance investment. This is in sharp contrast to the negative
investment-uncertainty relationship as commonly suggested in the extant literature.
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1. Introduction

The investment-uncertainty relationship has been extensively studied in the literature,

which by and large dictates a negative sign to such a relationship (see Caballero, 1991; Leahy

and Whited, 1996). The purpose of this paper is to shed more light on this relationship in a

canonical real options model of McDonald and Siegel (1986) and Dixit and Pindyck (1994).

Viewing investment opportunities as perpetual American call options, firms endogenously

devise their investment timing so as to maximize the option values. The optimal decision
∗Tel.: +852-2859-1044; fax: +852-2548-1152.
E-mail address: kpwong@econ.hku.hk.
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rule is that a project should be undertaken at the first instant when the value of the project

reaches a critical level (the investment trigger). To gauge the effect of uncertainty on

investment, we follow Wong (2007) to use the the expected time to exercise the investment

option. If this measure decreases (increases) with the volatility of the project, one can

reasonably infer a positive (negative) sign of the investment-uncertainty relationship.

Following Sarkar (2000) and Wong (2007, 2008), we employ the single-factor intertem-

poral capital asset pricing model (CAPM) of Merton (1973a) to determine the risk-adjusted

rate of return on the project. We show that the behavior of the investment trigger with

respect to the volatility of the project is non-monotonic. When the volatility of the project

goes up, the usual positive effect on option value (Merton, 1973b) makes waiting more ben-

eficial. This lifts up the investment trigger. On the other hand, there is a negative effect on

option value due to the upward adjustment of the discount rate in accord with the CAPM.

This makes waiting more costly and thus pushes down the investment trigger. We show

that the negative effect dominates (is dominated by) the positive effect for low (high) levels

of uncertainty, thereby rendering a U-shaped pattern of the investment trigger against the

volatility of the project.

We further show that the expected time of investment inherits the U-shaped pattern of

the investment trigger against the volatility of the project. Specifically, the positive effect

on option value that calls for shortening the investment time dominates for relatively safe

projects, while the negative effect on option value that calls for lengthening the investment

time dominates for sufficiently risky projects. Thus, it is quite possible that greater uncer-

tainty may in fact lure firms into making more investment through shortening the expected

time to exercise the investment option, especially when projects are relatively safe. This is

in sharp contrast to the negative investment-uncertainty relationship commonly found in

the extant literature.

The rest of this paper is organized as follows. The next section delineates the real options

model. Section 3 derives the investment trigger and the value of the investment option.
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Sections 4 and 5 examine how the investment trigger and the expected time to exercise the

investment option respond to an increase in the volatility of the project, respectively. The

final section concludes.

2. The model

Consider a canonical real options model à laMcDonald and Siegel (1986) and Dixit

and Pindyck (1994). Time, indexed by t ≥ 0, is continuous and the horizon is infinite.

Uncertainty is modeled by a complete probability space, (Ω,F , P ).

At time 0, a firm owns the right to invest in a project that can be irreversibly undertaken

at some endogenously chosen time, τ ≥ 0. The investment time, τ , is uncertain ex ante.

Investing in the project costs the firm I > 0, which is instantly paid at time τ . In return,

the firm receives a lump-sum payoff, Vτ , so that the net payoff of the project is Vτ − I at

time τ . We assume that the lump-sum payoff process, {Vt : t ≥ 0}, is governed by the

following geometric Brownian motion:

dVt = αVtdt + σVtdZt, (1)

where {Zt : t ≥ 0} is a standard Wiener process defined on (Ω,F , P ), and α > 0 and σ > 0

are the positive drift rate (expected growth rate) and volatility (standard derivation) per

unit of time, respectively. The initial value of the lump-sum payoff process, V0 > 0, is

known at time 0.

Investing in the project is analogous to exercising a perpetual American call option in

that the firm has the right, but not the obligation, to invest at some future time to be

optimally chosen by the firm. Let F (Vt) be the value of the investment option at time

t ≥ 0. The firm optimally exercises the investment option at the investment time, τ , when

the lump-sum payoff, Vτ , reaches a threshold level, V ∗, from below at the first instant. We



on the investment-uncertainty relationship 4

refer to V ∗ as the investment trigger.

Following Sarkar (2000) and Wong (2007, 2008), we assume that the underlying asset,

i.e., the lump-sum payoff, for the investment option can be completely spanned by financial

assets traded in the market, where risk-adjusted rates of return on financial assets are de-

termined by the single-factor intertemporal capital asset pricing model (CAPM) of Merton

(1973a). Let Yt be the price of an asset or a portfolio of assets that is perfectly correlated

with Vt. Denote by ρ > 0 as the correlation of Yt with the market portfolio.1 Then, the

price process, {Yt : t ≥ 0}, evolves over time according to the following geometric Brownian

motion:

dYt = (r + λρσ)Ytdt + σYtdZt, (2)

where r > 0 is the constant instantaneous riskless rate of interest, λ > 0 is the constant

market price of risk per unit of time, and r + λρσ is the risk-adjusted rate of return on

Yt according to the CAPM. Let δ = r + λρσ − α > 0 be the convenience yield or return

shortfall on Vt.2

3. Solution to the model

For all Vt ≥ V ∗, the investment option is immediately exercised so that F (Vt) = Vt − I .

On the other hand, for all Vt < V ∗, the firm keeps the investment option alive. To derive

F (Vt) in this case, we construct the following dynamic portfolio: (i) Hold the investment

option that is worth F (Vt), and (ii) go short n units of the asset or portfolio of assets that

completely spans Vt. The value of this dynamic portfolio is F (Vt) − nYt. The total return
1Since most assets would have values that are positively correlated with the market portfolio, we do not

consider the case that ρ ≤ 0.
2The assumption that δ > 0 is called for to ensure a finite investment trigger at the optimum. See Eq.

(14).
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from holding the portfolio over a short time interval, dt, is given by

dF (Vt) − ndYt

= F ′(Vt)dVt +
1
2
F ′′(Vt)(dVt)2 − n[(r + λρσ)Ytdt + σYtdZt]

=
[
αVtF

′(Vt) +
1
2
σ2V 2

t F ′′(Vt)− n(r + λρσ)Yt

]
dt + [VtF

′(Vt) − nYt]σdZt, (3)

where the first equality follows from Ito’s Lemma and Eq. (2), and the second equality

follows from Eq. (1) and (dVt)2 = σ2V 2
t dt. Substituting n = VtF

′(Vt)/Yt into Eq. (3)

yields

dF (Vt) −
VtF

′(Vt)
Yt

dYt =
[
1
2
σ2V 2

t F ′′(Vt) − δVtF
′(Vt)

]
dt, (4)

where δ = r+λρσ−α. Inspection of Eq. (4) reveals that the portfolio with n = VtF
′(Vt)/Yt

is riskless and thus we must have

[
1
2
σ2V 2

t F ′′(Vt)− δVtF
′(Vt)

]
dt = r[F (Vt) − VtF

′(Vt)]dt, (5)

to rule out arbitrage opportunities. Eliminating dt on both sides of Eq. (5) and rearranging

terms yields

1
2
σ2V 2

t F ′′(Vt) + (r − δ)VtF
′(Vt) − rF (Vt) = 0. (6)

Thus, F (Vt) must satisfy Eq. (6) for all Vt ∈ (0, V ∗), where V ∗ is a free boundary to be

optimally chosen by the firm.

Eq. (6) is a second-order linear homogeneous ordinary differential equation. The general

solution to Eq. (6) is the sum of two powers:

F (V ) = A1V
β1 + A2V

β2 , (7)
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where A1 and A2 are constants to be determined, and β1 and β2 are the positive and

negative roots, respectively, for the following fundamental quadratic equation:3

1
2
σ2β(β − 1) + (r − δ)β − r = 0. (8)

The two constants, A1 and A2, and the investment trigger, V ∗, are determined using con-

siderations that apply at the boundaries of the region, (0, V ∗). There are three boundary

conditions:

F (0) = 0, (9)

F (V ∗) = V ∗ − I, (10)

and

F ′(V ∗) = 1. (11)

The first boundary condition, Eq. (9), simply reflects the fact that zero is an absorbing

barrier for the geometric Brownian motion defined in Eq. (1). The second boundary

condition, Eq. (10), is the value-matching condition such that the value of the investment

option is equal to the net payoff of the project at the investment time, τ . The third boundary

condition, Eq. (11), is the smooth-pasting condition, or high-contact condition, such that

the investment trigger, V ∗, is the one that maximizes the value of the investment option.4

For Eq. (9) to hold, Eq. (7) implies that A2 = 0. Thus, we can ignore the negative

solution for β in Eq. (8) so that we can simply write β1 = β, where

β =
1
2
− r − δ

σ2
+

√(
1
2
− r − δ

σ2

)2

+
2r

σ2
. (12)

3Substituting Eq. (7) into Eq. (6) and simplifying the resulting equation yields Eq. (8).
4Shackleton and Sødal (2005) show that smooth pasting implies rate of return equalization between the

option and the levered position that results from exercise.
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Note that Eq. (8) can be written as

(β − 1)
(

1
2
σ2β + r

)
= δβ. (13)

Since β > 0 and δ > 0, it is evident from Eq. (13) that β > 1. Using the remaining two

boundary conditions, Eqs. (10) and (11), we solve the investment trigger, V ∗, and the value

of the investment option at time 0, F (V0), in the following proposition.

Proposition 1. The investment trigger, V ∗, is given by

V ∗ =
(

β

β − 1

)
I, (14)

and the value of the investment option at time 0 is given by

F (V0) =





(V ∗ − I)(V0/V ∗)β if V0 < V ∗,

V0 − I if V0 ≥ V ∗,
(15)

where β is defined in Eq. (12). Furthermore, for all V0 < V ∗, F (V0) is strictly convex and

greater than V0 − I.

Proof. Using Eq. (7) with A2 = 0 and β1 = β defined in Eq. (12), we can write Eqs. (10)

and (11) as

A1V
∗β = V ∗ − I, (16)

and

A1βV ∗β−1 = 1, (17)

respectively. Multiplying β to Eq. (16) and V ∗ to Eq. (17) and subtracting the resulting

equations yields Eq. (14). Substituting A2 = 0, β1 = β, and Eq. (16) into Eq. (7) yields

Eq. (15).
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Note that

d
dV

(
V − I

V β

)
=

βI − (β − 1)V
V β+1

=
(β − 1)(V ∗ − V )

V β+1
, (18)

where we have used Eq. (14). Thus, if V0 < V ∗, Eq. (18) implies that

V ∗ − I

V ∗β
>

V0 − I

V β
0

. (19)

Rewriting inequality (19) yields

F (V0) = (V ∗ − I)
(

V0

V ∗

)β

> V0 − I. (20)

Furthermore, for all V0 < V ∗, we have

F ′′(V0) =
β(β − 1)(V ∗ − I)V β−2

0

V ∗β
> 0, (21)

since β > 1. Hence, Eqs. (20) and (21) imply that F (V0) is strictly convex and greater

than V0 − I for all V0 < V ∗. 2

Since β > 1, Eq. (14) implies that V ∗ > I . That is, the firm finds it optimal to exercise

the investment option only when the net payoff of the project is sufficiently positive. The

term, (V0/V ∗)β , in Eq. (15) can be interpreted as the stochastic discount factor that

accounts for both the timing and the probability of one dollar received at the first instant

when the investment trigger, V ∗, is reached from below. If V0 ≥ V ∗, the investment option

is immediately exercised at time 0 so that F (V0) = V0 − I . Otherwise, the firm keeps the

investment option alive until the investment trigger, V ∗, is reached from below at the first

instant. In this case, F (V0) > V0 − I .

Figure 1 depicts the value of the investment option at time 0, F (V0), as a function of

the initial value of the lump-sum payoff, V0.

(Insert Figure 1 here)
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4. The trigger-uncertainty relationship

In this section, we examine the effect of uncertainty on the investment trigger, V ∗.

To this end, we follow Sarkar (2000) and Wong (2007, 2008) to refer to an increase in

uncertainty as an increase in σ, taking all other parameters, r, λ, ρ, and α, as constants.

In this case, the increase in σ has a systematic risk component that affects the convenience

yield, δ. In accord with the CAPM, we have dδ/dσ = λρ > 0. In contrast, McDonald and

Siegel (1986) and Dixit and Pindyck (1994) consider another type of increased uncertainty

in which the convenience yield, δ, is held fixed when σ varies, i.e., dδ/dσ = 0. In this

regard, the increase in σ has only an idiosyncratic risk component. While we follow the

approach of Sarkar (2000) and Wong (2007, 2008), our analysis is readily extended to the

case of McDonald and Siegel (1986) and Dixit and Pindyck (1994) by setting dδ/dσ = 0.

Differentiating Eq. (8) with respect to σ yields

dβ

dσ
=

β

σ2(β − 1/2) + r − δ

[
dδ

dσ
− σ(β − 1)

]
=

2β2

σ2β2 + 2r

[
dδ

dσ
− σ(β − 1)

]
, (22)

where the second equality follows from Eq. (8). Differentiating Eq. (14) with respect to σ

yields

dV ∗

dσ
= − I

(β − 1)2
dβ

dσ
=

2βV ∗

(β − 1)(σ2β2 + 2r)

[
σ(β − 1)− dδ

dσ

]
, (23)

where the second equality follows from Eqs. (14) and (22). If dδ/dσ = 0, it is evident

from Eq. (23) that dV ∗/dσ > 0 for all σ > 0. However, if dδ/dσ = λρ > 0, the trigger-

uncertainty relationship is no longer monotonic, as is shown in the following proposition.

Proposition 2. If dδ/dσ = λρ > 0, there exists a unique point, σ∗ ∈ (0,
√

2α), defined by

σ∗ =

√(
2r − 2α + λ2ρ2

2λρ

)2

+ 2α − 2r − 2α + λ2ρ2

2λρ
, (24)

such that dV ∗/dσ < (>) 0 for all σ < (>) σ∗.
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Proof. Eq. (23) implies that dV ∗/dσ has the same sign as that of σ(β − 1) − λρ. Using

Eq. (12) and δ = r + λρσ − α, we have

σ(β − 1)− λρ =

√(
σ2 − 2α

2σ
+ λρ

)2

+ 2r − 2α + σ2

2σ
. (25)

Note that

[√(
σ2 − 2α

2σ
+ λρ

)2

+ 2r − 2α + σ2

2σ

][√(
σ2 − 2α

2σ
+ λρ

)2

+ 2r +
2α + σ2

2σ

]

=
(

σ2 − 2α

2σ
+ λρ

)2

+ 2r −
(

2α + σ2

2σ

)2

=
1
σ

[λρσ2 + (2r − 2α + λ2ρ2)σ − 2αλρ]. (26)

Inspection of Eqs. (25) and (26) reveals that σ(β − 1) − λρ has the same sign as that of

λρσ2 + (2r − 2α + λ2ρ2)σ − 2αλρ, which is negative or positive depending on whether σ is

lower or higher than σ∗, respectively, where σ∗ is defined in Eq. (24). It is evident from

Eq. (24) that σ∗ > 0. Note that

(
2r − 2α + λ2ρ2

2λρ

)2

+ 2α <

(
2r − 2α + λ2ρ2

2λρ
+

√
2α

)2

. (27)

Taking the square root on both side of inequality (27) and rearranging terms yields σ∗ <
√

2α. 2

To see the intuition of Proposition 2, we write Eq. (23) as

dV ∗

dσ
=

2βV ∗σ

σ2β2 + 2r
− 2βV ∗

(β − 1)(σ2β2 + 2r)
dδ

dσ
. (28)

The first term on the right-hand side of Eq. (28) captures the usual positive effect due to the

enhanced value of the investment option in response to an increase in σ (Merton, 1973b),

holding the convenience yield, δ, fixed. The firm as such is induced to wait longer by lifting

up the investment trigger. The second term on the right-hand side of Eq. (28) captures a
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negative effect that arises from the fact that dδ/dσ = λρ > 0 in accord with the CAPM. The

upward adjustment of the discount rate reduces the present value of the investment option.

This makes waiting less attractive and thus the firm is induced to lower the investment

trigger. The two effects act against each other. When there is relatively little uncertainty,

it is evident from Eq. (28) that the positive effect is at best second order. The negative

effect, on the other hand, is always first order because the risk-adjusted rate of return on

the project is linear in σ in accord with the CAPM. When uncertainty becomes greater, the

positive effect dominates the negative effect because the significance of the positive effect

grows exponentially with σ while that of the negative effect grows only linearly with σ. This

explains why V ∗ has a U-shaped pattern against σ with the unique minimum attained at

σ∗.

5. The investment-uncertainty relationship

In this section, we examine the sign of the investment-uncertainty relationship in the

context of our real options model. To have an interesting case, we assume that V0 < V ∗ so

that the investment option is not immediately exercised at time 0.

Let Xt = lnVt. Using Ito’s Lemma, Eq. (1) implies that Xt is governed by the following

arithmetic Brownian motion:

dXt =
(

α − σ2

2

)
dt + σdZt. (29)

Let φ(X, τ) be the probability density function of the investment time, τ , at which the

lump-sum payoff of the project reaches the investment trigger, V ∗, from the initial value,

V0, at the first instant, and X = ln(V ∗/V0). Define L(X, θ) as the Laplace transform, or

characteristic function, of φ(X, τ):

L(X, θ) =
∫ ∞

0
exp(−θτ)φ(X, τ) dτ. (30)
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We solve φ(X, τ) and L(X, θ) in the following proposition.

Proposition 3. The probability density function of the investment time, τ , at which the

lump-sum payoff of the project reaches the investment trigger, V ∗, from the initial value,

V0, at the first instant is given by

φ(X, τ) =
X

σ
√

2πτ3
exp

{
− 1

2σ2τ

[
X −

(
α − σ2

2

)
τ

]2}
, (31)

and the Laplace transform of φ(X, τ) is given by

L(X, θ) = exp
{
− X

σ2

[√(
α − σ2

2

)2

+ 2σ2θ −
(

α − σ2

2

)]}
, (32)

where X = ln(V ∗/V0) and V0 < V ∗.

Proof. We know that φ(X, τ) must satisfy the forward Kolmogorov, or Fokker-Planck,

equation of motion:

1
2
σ2 ∂2φ(X, τ)

∂X2
−

(
α − σ2

2

)
∂φ(X, τ)

∂X
− ∂φ(X, τ)

∂τ
= 0. (33)

Taking Laplace transforms of Eq. (33) term by term gives

1
2
σ2

∫ ∞

0
exp(−θτ)

∂2φ(X, τ)
∂X2

dτ

−
(

α − σ2

2

) ∫ ∞

0
exp(−θτ)

∂φ(X, τ)
∂X

dτ −
∫ ∞

0
exp(−θτ)

∂φ(X, τ)
∂τ

dτ = 0. (34)

Using Eq. (30), we can write Eq. (34) as

1
2
σ2 ∂2L(X, θ)

∂X2
−

(
α − σ2

2

)
∂L(X, θ)

∂X
− θL(X, θ) = 0, (35)

where the last term on the left-hand side of Eq. (35) follows from integrating by parts. Eq.

(35) is a second-order linear differential equation with constant coefficients. The general

solution to Eq. (35) is the sum of two exponentials:

L(X, θ) = B1 exp[γ1(θ)X ] + B2 exp[γ2(θ)X ], (36)
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where B1 and B2 are constants to be determined, and γ1(θ) and γ2(θ) are the positive and

negative roots, respectively, for the following quadratic equation:5

1
2
σ2γ2 −

(
α − σ2

2

)
γ − θ = 0. (37)

The two constants, B1 and B2, are determined using two appropriate boundary conditions.

First, note that

L(X, θ) ≤ L(X, 0) =
∫ ∞

0
φ(X, τ) dτ ≤ 1, (38)

for all X > 0. For Eq. (38) to hold, Eq. (36) implies that B1 = 0 or else L(∞, θ) would

be unbounded. Second, at X = 0, i.e., at V0 = V ∗, investment occurs immediately. In this

case, φ(0, τ) becomes the Dirac delta function so that L(0, θ) = exp(−θ × 0) = 1. It then

follows from Eq. (36) with B1 = 0 that B2 = 1. Solving Eq. (37) for γ2(θ) yields

γ2(θ) = − 1
σ2

[√(
α − σ2

2

)2

+ 2σ2θ −
(

α − σ2

2

)]
. (39)

Substituting B1 = 0, B2 = 1, and Eq. (39) into Eq. (36) yields Eq. (32). Inversion of Eq.

(32) yields Eq. (31). 2

Following Wong (2007) and Gutiérrez (2007), we adopt the following two definitions to

characterize the sign of the investment-uncertainty relationship.

Definition 1. Given that the probability of eventual investment is equal to one, the sign of

the investment-uncertainty relationship is said to be positive (negative) if, and only if, the

expected time of investment decreases (increases) with an increase in uncertainty.

Definition 2. Given that the probability of eventual investment is less than one, the sign

of the investment-uncertainty relationship is said to be positive (negative) if, and only if,

the probability of eventual investment increases (decreases) with an increase in uncertainty.
5Substituting Eq. (36) into Eq. (35) and simplifying the resulting equation yields Eq. (37).
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The probability of eventual investment, Π, is given by

Π =
∫ ∞

0
φ(X, τ) dτ = L(X, 0). (40)

where the second equality follows from Eq. (30). Eqs. (32) and (40) imply that Π = 1 if,

and only if, σ ≤
√

2α. For all σ >
√

2α, Eqs. (32) and (40) imply that

Π = exp
[
−

(
1 − 2α

σ2

)
ln

(
V ∗

V0

)]
=

(
V0

V ∗

)1−2α/σ2

, (41)

which is less than one. The expected time of investment, E(τ), is given by

E(τ) =
∫ ∞

0
τφ(X, τ) dτ = −∂L(X, θ)

∂θ

∣∣∣∣
θ=0

, (42)

where the second equality follows from Eq. (30). Using Eqs. (32) and (42), we have

E(τ) =
(
α − σ2

2

)−1

ln
(

V ∗

V0

)
, (43)

which is well-defined only when σ <
√

2α, i.e., when Π = 1.

For all σ <
√

2α, we differentiate Eq. (43) with respect to σ to yield

dE(τ)
dσ

=
(
α − σ2

2

)−2[
σln

(
V ∗

V0

)
+

(
α − σ2

2

)
1

V ∗
dV ∗

dσ

]
. (44)

For all σ >
√

2α, we differentiate Eq. (41) with respect to σ to yield

dΠ
dσ

= −Π
[
4α

σ3
ln

(
V ∗

V0

)
+

(
1 − 2α

σ2

)
1

V ∗
dV ∗

dσ

]
. (45)

If dδ/dσ = 0, we know from Eq. (23) that dV ∗/dσ > 0 for all σ > 0. Eqs. (44) and (45)

then imply that dE(τ)/dσ > 0 and dΠ/dσ < 0, thereby rendering a positive investment-

uncertainty relationship according to Definitions 1 and 2. However, if dδ/dσ = λρ > 0, the

investment-uncertainty relationship becomes non-monotonic, as is shown in the following

proposition.
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Proposition 4. If dδ/dσ = λρ > 0, there exists a unique point, σo ∈ (0, σ∗), implicitly

defined by

dE(τ)
dσ

∣∣∣∣
σ=σo

= 0, (46)

such that dE(τ)/dσ < 0 for all σ < σo, dE(τ)/dσ > 0 for all σ ∈ (σo,
√

2α), and dΠ/dσ < 0

for all σ >
√

2α.

Proof. From Proposition 2, we know that dV ∗/dσ > 0 for all σ > σ∗. Thus, Eq. (44)

implies that dE(τ)/dσ > 0 for all σ ∈ [σ∗,
√

2α) and Eq. (45) implies that dΠ/dσ < 0 for

all σ >
√

2α. Define the expression inside the squared brackets on the right-hand side of

Eq. (44) as M :

M = σln
(

V ∗

V0

)
+

(
α − σ2

2

)
1

V ∗
dV ∗

dσ
. (47)

Differentiating Eq. (47) with respect to σ yields

dM

dσ
= ln

(
V ∗

V0

)
+

(
α − σ2

2

)[
1

V ∗
d2V ∗

dσ2
−

(
1

V ∗
dV ∗

dσ

)2]
. (48)

Differentiating Eq. (23) with respect to σ yields

d2V ∗

dσ2
=

2I

(β − 1)3

(
dβ

dσ

)2

− I

(β − 1)2
d2β

dσ2
. (49)

Substituting Eqs. (14), (23), and (49) into Eq. (48) yields

dM

dσ
= ln

(
V ∗

V0

)
+

(
α − σ2

2

)[
2β − 1

β2(β − 1)2

(
dβ

dσ

)2

− 1
β(β − 1)

d2β

dσ2

]
. (50)

Differentiating Eq. (22) with respect to σ yields

d2β

dσ2
=

8β3[λρ− σ(β − 1)][λρ− σ(2β − 1)]
(σ2β2 + 2r)2

−2β2(β − 1)
σ2β2 + 2r

− 8β5σ2[λρ− σ(β − 1)]2

(σ2β2 + 2r)3
. (51)
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Substituting Eqs. (22) and (51) into Eq. (50) yields

dM

dσ
= ln

(
V ∗

V0

)
+

(
α − σ2

2

){
4β2[λρ− σ(β − 1)]2

(β − 1)2(σ2β2 + 2r)2

+
8β3σ[λρ− σ(β − 1)]
(β − 1)(σ2β2 + 2r)2

+
2β

σ2β2 + 2r
+

8β4σ2[λρ− σ(β − 1)]2

(β − 1)(σ2β2 + 2r)3

}
, (52)

which is unambiguously positive for all σ ∈ (0, σ∗) since in this case we have σ(β−1)−λρ < 0.

It then follows from Eq. (44) that dE(τ)/dσ is strictly increasing in σ for all σ ∈ (0, σ∗).

Eq. (8) implies that β → r/α as σ → 0. Taking limit on both sides of Eq. (44) as σ → 0

therefore yields

lim
σ→0

dE(τ)
dσ

= − λρ

α(r − α)
< 0. (53)

Since dE(τ)/dσ is strictly increasing in σ for all σ ∈ (0, σ∗) and dE(τ)/dσ > 0 for all

σ ∈ [σ∗,
√

2α), we conclude from Eq. (53) that there exists a unique point, σo ∈ (0, σ∗),

implicitly defined in Eq. (46), such that dE(τ)/dσ < 0 for all σ ∈ (0, σo) and dE(τ)/dσ > 0

for all σ ∈ (σo,
√

2α). 2

To see the intuition of Proposition 4, we use Eq. (28) to recast Eq. (44) as

dE(τ)
dσ

=
[(

α − σ2

2

)−2

ln
(

V ∗

V0

)
+

(
α − σ2

2

)−1 2β

σ2β2 + 2r

]
σ

−
(

α − σ2

2

)−1 2β

(β − 1)(σ2β2 + 2r)
dδ

dσ
. (54)

Inspection of Eq. (54) reveals two effects that govern the expected time of investment

when the volatility of the project goes up. As in the previous section, the first term on the

right-hand side of Eq. (54) captures the positive effect while the second term captures the

negative effect. Proposition 4 states that greater uncertainty may in fact lure the firm into

making more investment through shortening the expected time of investment, especially

when the project is relatively safe (i.e., σ < σo). When the project is sufficiently risky (i.e.,
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σ > σo), the usual negative investment-uncertainty relationship as suggested in the extant

literature prevails. This non-monotonic investment-uncertainty relationship is driven by the

U-shaped pattern of the investment trigger against the volatility of the project. Specifically,

the negative effect that calls for shortening the investment time dominates for relatively safe

projects, while the positive effect that calls for lengthening the investment time dominates

for sufficiently risky projects.

6. Conclusion

This paper has examined the investment-uncertainty relationship in a canonical real

options model of McDonald and Siegel (1986) and Dixit and Pindyck (1994) with a caveat:

Risk-adjusted rates of return on projects are determined by the single-factor intertemporal

capital asset pricing model (CAPM) of Merton (1973a). We have shown that the critical

lump-sum payoff of a project, i.e., the investment trigger, that triggers the exercise of the

investment option exhibits a U-shaped pattern against the volatility of the project. This

U-shaped pattern is driven by two opposing effects. When the volatility of the project goes

up, the usual positive effect on option value (Merton, 1973b) makes waiting more beneficial.

This lifts up the investment trigger. On the other hand, there is a negative effect on option

value due to the upward adjustment of the discount rate in accord with the CAPM. This

makes waiting more costly and thus pushes down the investment trigger. We have shown

that the negative effect dominates (is dominated by) the positive effect for low (high) levels

of uncertainty. We have further shown that the U-shaped pattern of the investment trigger

against the volatility is inherited by the investment-uncertainty relationship. For relatively

safe projects, greater uncertainty may in fact shorten the expected time to exercise the

investment option and thereby lure firms into making more investment, which is in sharp

contrast to the negative investment-uncertainty relationship as commonly suggested in the

extant literature.
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