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PRODUCTION, LIQUIDITY, AND FUTURES PRICE DYNAMICS

This paper examines the optimal design of a futures hedge program for the com-
petitive firm under output price uncertainty. All futures contracts are unbiased
and marked to market in that they require interim cash settlement of gains and
losses. The futures price dynamics follows a first-order autoregression with a
random walk serving as a special case. The firm’s futures hedge program is con-
stituted of an endogenous provision for premature termination, which depends
on how the futures prices are autocorrelated. Succinctly, the firm voluntarily
commits to premature liquidation of its futures position on which the interim
loss incurred exceeds a predetermined threshold level if the futures prices are
positively autocorrelated. In this case, the liquidity constrained firm optimally
opts for an over-hedge if its preferences exhibit either constant or increasing
absolute risk aversion. If the futures prices are uncorrelated or negatively au-
tocorrelated, the firm prefers to be liquidity unconstrained and thus adopts a
full-hedge to completely eliminate the price risk.

INTRODUCTION

Firms take liquidity risk seriously when devising their risk management strategies.1 Failure

to do so may lead even technically solvent firms to bankruptcy. An apposite example of

this sort is the disaster at Metallgesellschaft A. G. (MG), the fourteenth largest industrial

firm in Germany.2

In December 1993, MG nearly went bankrupt owing to huge losses incurred by its

U.S. subsidiary, MG Refining and Marketing, Inc. (MGRM), in oil futures markets. As

a marketing device, MGRM offered long-term contracts for oil and refined oil products

that allow its customers to lock in fixed prices up to 10 years into the future. To hedge

the oil price risk, MGRM took on large positions in energy derivatives, primarily in oil
1According to the Committee on Payment and Settlement Systems (1998), liquidity risk is one of the

risks that users of derivatives and other financial contracts must consider.
2Another example is the debacle of Long-Term Capital Management (Jorion, 2001).
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futures. When oil prices plummeted in 1993, MGRM was unable to meet its variation

margin payments due to the denial of credit from its banks.3 This debacle resulted in a

$2.4 billion rescue package coupled with a premature liquidation of its futures positions en

masse so as to keep MG solvent (Culp and Miller, 1995).

While basis risk in oil futures would certainly imply that MG’s hedge did not successfully

lock in value (Ross, 1997; Hilliard, 1999; Neuberger, 1999), Mello and Parsons (1995, 2000)

identify the funding requirements of MG’s hedging strategy as one of the central causes of

the problem. Indeed, Mello and Parsons (1995, 2000) show that a perfect hedge does not

create its own liquidity, and that the inability to fund a hedging strategy to its end is a

serious defect in the design of many popular hedging strategies. In light of these findings,

the purpose of this paper is to examine whether there is any role of liquidity constraints

in the optimal design of a futures hedge program that allows an endogenously determined

provision for terminating the program.

This paper develops a dynamic variant model of the competitive firm under output

price uncertainty (Sandmo, 1971). Specifically, the firm produces a single commodity that

is sold at the end of the planning horizon. Since the subsequent spot output price is not

known ex ante, the firm trades unbiased futures contracts for hedging purposes. All of the

unbiased futures contracts are marked to market in that they require cash settlement of

gains and losses at the end of each period. The futures price dynamics is assumed to follow

a first-order autoregression that includes a random walk as a special case.

To meet the indeterminate interim loss from its futures position, the firm puts aside

a fixed amount of capital earmarked for its futures hedge program. The firm commits to

premature liquidation of its futures position on which the interim loss incurred exhausts

the earmarked capital. The capital commitment as such constitutes a liquidity constraint,

where the choice of the former dictates the severity of the latter. The presence of the

liquidity constraint is shown to truncate the firm’s payoff profile, which plays a pivotal role
3Culp and Hanke (1994) report that “four major European banks called in their outstanding loans to

MGRM when its problems became public in December 1993. Those loans, which the banks had previously
rolled-over each month, denied MGRM much needed cash to finance its variation margin payments and
exacerbated its liquidity problems.”
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in shaping the firm’s optimal production and hedging decisions. Given that the futures

prices are autocorrelated, the resulting intertemporal linkage is likely to induce the firm to

consider a provision for premature termination of its futures hedge program.

In the benchmark case that the firm is not liquidity constrained, the celebrated separa-

tion and full-hedging theorems of Danthine (1978), Holthausen (1979), and Feder, Just, and

Schmitz (1980) apply. The separation theorem states that the firm’s production decision

depends neither on its risk attitude nor on the underlying output price uncertainty. The

full-hedging theorem states that the firm should completely eliminate its output price risk

exposure by adopting a full-hedge via the unbiased futures contracts.

When the choice of the capital commitment, i.e., the severity of the liquidity constraint,

is endogenously determined by the firm, it is shown that the firm voluntarily chooses to

limit the amount of capital earmarked for its futures hedge program should the futures

prices be positively autocorrelated. A positive autocorrelation implies that a loss from a

futures position tends to be followed by another loss from the same position. The firm as

such finds premature liquidation of its futures position to be ex-post optimal. The severity

of the liquidity constraint is thus chosen by the firm to strike a balance between ex-ante and

ex-post efficient risk sharing. The liquidity constrained firm is shown to optimally opt for

an over-hedge if its preferences exhibit either constant or increasing absolute risk aversion.

If the futures prices are uncorrelated or negatively autocorrelated, premature liquidation

of the futures position is never ex-post optimal, thereby making the firm prefer not to be

liquidity constrained and the separation and full-hedging theorems follow.

In a similar model in which the competitive firm faces an exogenous liquidity constraint

and the futures price dynamics follows a random walk, Lien (2003) shows the optimality

of an under-hedge. Wong (2004a, 2004b) and Wong and Xu (2006) further show that the

liquidity constrained firm optimally cuts down its production. These results are in line

with those of Paroush and Wolf (1989) in that the presence of residual unhedgeable risk

would adversely affect the hedging and production decisions of the competitive firm under

output price uncertainty. In contrast, this paper allows not only an endogenous liquidity
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constraint but also a first-order autocorrelation of the futures price dynamics. The latter

renders the futures prices predictability of which the firm has incentives to take advantage.

This explains why an over-hedge, coupled with a commitment to premature liquidation, is

optimal when the futures prices are positively autocorrelated. When the futures prices are

uncorrelated or negatively autocorrelated, premature liquidation is suboptimal and thus

the firm adopts a full-hedge. In the case of an exogenously liquidity constraint, premature

liquidation is inevitable so that an under-hedge is called for to limit the potential loss due

to a lack of liquidity. The disparate results thus identify factors such as the predictability

of futures prices, the severity of liquidity constraints, and the attitude of risk preferences

to be crucial for the optimal design of a futures hedge program.

The rest of this paper is organized as follows. The next section delineates a two-period

model of the competitive firm facing both output price uncertainty and endogenous liquidity

risk. The subsequent section characterizes the solution to the model. The penultimate

section constructs a numerical example based on a negative exponential utility function to

help understand the findings. The final section concludes.

THE MODEL

Consider a dynamic variant model of the competitive firm under output price uncertainty

à la Sandmo (1971). There are two periods with three dates, indexed by t = 0, 1, and 2.

To begin, the firm produces a single commodity according to a deterministic cost function,

c(q), where q ≥ 0 is the output level chosen by the firm at t = 0. The cost function, c(q),

is assumed to satisfy that c(0) = c′(0) = 0, and that c′(q) > 0 and c′′(q) > 0 for all q > 0.

The firm sells its entire output, q, at t = 2 at the then prevailing spot price, p̃2, that is

not known ex ante.4 Interest rates in both periods, however, are known with certainty at

t = 0. To simplify notation, the interest factors are henceforth suppressed by compounding

all cash flows to their futures values at t = 2.
4Throughout the paper, random variables have a tilde (∼) while their realizations do not.



Production, Liquidity, and Futures Price Dynamics 5

To hedge its exposure to the price risk, the firm can trade infinitely divisible futures

contracts at t = 0. Each of the futures contracts calls for delivery of one unit of the

commodity at t = 2, and is marked to market at t = 1. Let ft be the futures price at

date t (t = 0, 1, and 2). While the initial futures price, f0, is predetermined and known at

t = 0, the other futures prices, f̃1 and f̃2, are regarded as random variables ex ante. In the

absence of basis risk, the futures price at t = 2 must be set equal to the spot price at that

time by convergence so that f̃2 = p̃2.

The futures price dynamics is specifically modeled by assuming that f̃t = ft−1 + ε̃t for

t = 1 and 2, where ε̃2 = ρε̃1 + δ̃, ρ is a scalar, and ε̃1 and δ̃ are two random variables

independent of each other. To focus on the firm’s hedging motive, vis-à-vis its speculative

motive, ε̃1 and δ̃ are assumed to have means of zero so that the initial futures price, f0, is

unbiased and set equal to the unconditional expected value of the random spot price at t = 2,

p̃2. The futures price dynamics as such is a first-order positive or negative autoregression,

depending on whether ρ is positive or negative, respectively. If ρ = 0, the futures price

dynamics becomes a random walk.

The firm’s futures hedge program is delineated by a pair, (h, k), where h ≥ 0 is the

number of the futures contracts sold by the firm at t = 0, and k ≥ 0 is a threshold level

of interim losses incurred from the firm’s futures position, h, due to marking to market at

t = 1.5 Specifically, the firm suffers a loss (or enjoys a gain if negative) of (f1 − f0)h from

its futures position, h, at t = 1. The firm commits to prematurely liquidating its futures

position, h, at t = 1 if (f1 − f0)h > k, implying that its random profit at t = 2 in this case

is given by

π̃` = p̃2q + (f0 − f1)h − c(q) = (f0 + ρε1 + δ̃)q + ε1(q − h) − c(q). (1)

Otherwise, the firm holds its futures position until t = 2 so that its random profit at that

time becomes

π̃c = p̃2q + (f0 − f̃2)h − c(q) = f0q + (ε1 + ρε1 + δ̃)(q − h) − c(q). (2)
5It is shown in the appendix that the firm would never opt for a long futures position, i.e., h < 0.
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The firm is risk averse and possesses a von Neumann-Morgenstern utility function, u(π),

defined over its profit at t = 2, π, where u′(π) > 0 and u′′(π) < 0.6 The firm’s decision

problem at t = 0 is to chooses an output level, q, and devise a futures hedge program, (h, k),

so as to maximize the expected utility of its random profit at t = 2:

max
q,h,k

∫ k/h

−∞
Eδ[u(π̃c)]g(ε1) dε1 +

∫ ∞

k/h
Eδ[u(π̃`)]g(ε1) dε1, (3)

where Eδ(·) is the expectation operator with respect to the probability density function of

δ̃, g(ε1) is the probability density function of ε̃1, and π̃` and π̃c are defined in Eqs. (1) and

(2), respectively. The firm’s futures position, h, is said to be an under-hedge, a full-hedge,

or an over-hedge if, and only if, h is smaller than, equal to, or greater than q, respectively.

The Kuhn-Tucker conditions for program (3) are given by7

∫ k∗/h∗

−∞
Eδ{u′(π̃∗

c )[f0 + ε1 + ρε1 + δ̃ − c′(q∗)]}g(ε1) dε1

+
∫ ∞

k∗/h∗
Eδ{u′(π̃∗

` )[f0 + ε1 + ρε1 + δ̃ − c′(q∗)]}g(ε1) dε1 = 0, (4)

−
∫ k∗/h∗

−∞
Eδ[u′(π̃∗

c )(ε1 + ρε1 + δ̃)]g(ε1) dε1 −
∫ ∞

k∗/h∗
Eδ[u′(π̃∗

` )]ε1g(ε1) dε1

−Eδ[u(π̃∗
c0) − u(π̃∗

`0)]g(k∗/h∗)k∗/h∗2 = 0, (5)

and

Eδ[u(π̃∗
c0) − u(π̃∗

`0)]g(k∗/h∗)/h∗ ≥ 0, (6)

where π̃∗
`0 = f0q

∗ + [(1 + ρ)k∗/h∗ + δ̃]q∗ − k∗ − c(q∗), π̃∗
c0 = f0q

∗ + [(1 + ρ)k∗/h∗ + δ̃](q∗ −

h∗) − c(q∗), and an asterisk (∗) signifies an optimal level. Should k∗ < ∞, condition (6)

holds with equality.
6The risk-averse behavior of the firm can be motivated by managerial risk aversion (Stulz, 1984), corpo-

rate taxes (Smith and Stulz, 1985), costs of financial distress (Smith and Stulz, 1985), and capital market
imperfections (Froot, Scharfstein, and Stein, 1993; Stulz, 1990). See Tufano (1996) for evidence that man-
agerial risk aversion is a rationale for corporate risk management in the gold mining industry.

7The second-order conditions for program (3) are satisfied given risk aversion and the strict convexity of
c(q).
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SOLUTION TO THE MODEL

Consider first the benchmark case that the firm is not liquidity constrained, which is tan-

tamount to setting k = ∞. The first-order conditions for program (3) in this benchmark

case are given by

∫ ∞

−∞
Eδ{u′(π̃0

c )[f0 + ε1 + ρε1 + δ̃ − c′(q0)]}g(ε1) dε1 = 0, (7)

and

−
∫ ∞

−∞
Eδ[u′(π̃0

c )(ε1 + ρε1 + δ̃)]g(ε1) dε1 = 0, (8)

where a nought (0) indicates an optimal level.

Adding Eq. (8) to Eq. (7) yields

[f0 − c′(q0)]
∫ ∞

−∞
Eδ[u′(π̃0

c )]g(ε1) dε1 = 0. (9)

Since u′(π) > 0, Eq. (9) reduces to c′(q0) = f0. If h0 = q0, the left-hand side of Eq. (8)

becomes

−(1 + ρ)u′[f0q
0 − c(q0)]

∫ ∞

−∞
ε1g(ε1) dε1 = 0, (10)

since ε̃1 and δ̃ have means of zero. Inspection of Eqs. (8) and (10) reveals that h0 = q0 is

indeed the optimal futures position. The following proposition is therefore established.

Proposition 1. Given that the competitive firm is not liquidity constrained, i.e., k = ∞,

the firm’s optimal output level, q0, solves

c′(q0) = f0, (11)

and its optimal futures position, h0, is a full-hedge, i.e., h0 = q0.
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The intuition of Proposition 1 is as follows. If the firm is not liquidity constrained, its

random profit at t = 2 is given by Eq. (2) only. The firm could have completely eliminated

all the price risk had it chosen h = q within its own discretion. Alternatively put, the

degree of price risk exposure to be assumed by the firm should be totally unrelated to

its production decision. The optimal output level is then chosen to maximize f0q − c(q),

thereby yielding q0 that solves Eq. (11). Since the futures contracts are unbiased, they

offers actuarially fair “insurance” to the firm. Being risk averse, the firm finds it optimal to

opt for full insurance via a full-hedge, i.e., h0 = q0. These results are simply the well-known

separation and full-hedging theorems of Danthine (1978), Holthausen (1979), and Feder,

Just, and Schmitz (1980).

Resume now the original case that the liquidity threshold, k, is endogenously determined

by the firm at t = 0. To facilitate the exposition, fix h = q = q0 in program (3) to yield

max
k

u[f0q
0 − c(q0)]

∫ k/q0

−∞
g(ε1) dε1

+
∫ ∞

k/q0
Eδ{u[(f0 + ρε1 + δ̃)q0 − c(q0)]}g(ε1) dε1. (12)

The Kuhn-Tucker condition for program (12) is given by

{
u[f0q

0 − c(q0)]− Eδ{u[(f0 + δ̃)q0 + ρk0 − c(q0)]}
}
g(k0/q0)/q0 ≥ 0, (13)

where k0 is the optimal liquidity threshold when h = q = q0. Should k0 < ∞, condition

(13) holds with equality.

If ρ ≤ 0, it follows from u′′(π) < 0, Eδ(δ̃) = 0, and Jensen’s inequality that u[f0q
0 −

c(q0)] ≥ u[f0q
0 + ρk0 − c(q0)] > Eδ{u[(f0 + δ̃)q0 + ρk0 − c(q0)]}, and thus k0 = ∞ by

condition (13). Since Proposition 1 implies that h∗ = q∗ = q0 if k∗ = ∞, it must be the case

that h∗ = q∗ = q0 and k∗ = ∞ if k0 = ∞. On the other hand, if ρ > 0, it is evident that

Eδ{u[(f0 + δ̃)q0 + ρk − c(q0)]} is increasing in k. When k = 0, it follows from u′′(π) < 0,

Eδ(δ̃) = 0, and Jensen’s inequality that Eδ{u[(f0 + δ̃)q0−c(q0)]} < u[f0q
0−c(q0)]. Also, for

k sufficiently large, it must be the case that Eδ{u[(f0 + δ̃)q0 +ρk− c(q0)]} > u[f0q
0− c(q0)].
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Thus, there exists a unique point, k0 ∈ (0,∞), such that condition (13) holds with equality.

Suppose that k∗ = ∞ but k0 < ∞. It then follows from Proposition 1 that h∗ = q∗ = q0,

which would imply that k0 = k∗ = ∞, a contradiction to k0 < ∞. The following proposition

summarizes these results.

Proposition 2. Given that the competitive firm optimally devises its futures hedge program,

(h∗, k∗), the firm commits to the optimal liquidation threshold, k∗, that is positive and finite

(infinite) if the autocorrelation coefficient, ρ, is positive (non-positive).

The intuition of Proposition 2 is as follows. If the firm chooses k = ∞, risk sharing

is ex-ante efficient because the firm can completely eliminate all the price risk. However,

this is not ex-post efficient, especially when ρ > 0. To see this, note that for any given

k < ∞ the firm prematurely liquidates its futures position at t = 1 for all ε1 ∈ [k/h,∞).

Conditional on premature liquidation, the expected value of f2 is equal to f1 + ρε1, which

is greater (not greater) than f1 when ρ > (≤) 0. Thus, it is ex-post optimal for the firm to

liquidate its futures position prematurely to limit further losses if ρ > 0. In this case, the

firm chooses the optimal threshold level, k∗, to be finite so as to strike a balance between

ex-ante and ex-post efficient risk sharing.8 If ρ ≤ 0, premature liquidation is never ex-post

optimal and thus the firm chooses k∗ = ∞.

When ρ ≤ 0, Proposition 2 implies that k∗ = ∞. It then follows from Proposition 1

that h∗ = q∗ = q0, thereby invoking the following proposition.

Proposition 3. Given that the firm optimally devises its futures hedge program, (h∗, k∗),

the firm’s optimal output level, q∗, equals the benchmark level, q0, and its optimal futures

position, h∗, is a full-hedge, i.e., h∗ = q∗, if the autocorrelation coefficient, ρ, is non-positive.

When ρ > 0, Proposition 2 implies that the firm voluntarily chooses to be liquidity

constrained, i.e., k∗ < ∞. Hence, in this case, condition (6) holds with equality and
8The firm’s commitment to premature liquidation of its futures position on which the interim loss incurred

exceeds k∗ is evidently time-consistent.
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the solution, (q∗, h∗, k∗), solves Eqs. (4), (5), and (6) simultaneously. To facilitate the

exposition, the firm’s ex-ante decision problem is formulated as a two-stage optimization

problem with q fixed at q∗. In the first stage, the firm chooses its optimal liquidation

threshold, k(h), for a given futures position, h:

k(h) = argmax
k>0

∫ k/h

−∞
Eδ[u(π̃c)]g(ε1) dε1 +

∫ ∞

k/h
Eδ[u(π̃`)]g(ε1) dε1, (14)

where π̃` and π̃c are given in Eqs. (1) and (2) with q = q∗, respectively. In the second stage,

the firm chooses its optimal futures position, h∗, taking the liquidation threshold, k(h), as

given by Eq. (14):

max
h

Φ(h) =
∫ k(h)/h

−∞
Eδ[u(π̃c)]g(ε1) dε1 +

∫ ∞

k(h)/h
Eδ[u(π̃`)]g(ε1) dε1, (15)

where π̃` and π̃c are given in Eqs. (1) and (2) with q = q∗ and k = k(h), respectively. The

complete solution is thus given by h∗ and k∗ = k(h∗).

Differentiating Φ(h) in Eq. (15) with respect to h, using the envelope theorem, and

evaluating the resulting derivative at h = q∗ yields

Φ′(q∗) = −(1 + ρ)u′[f0q
∗ − c(q∗)]

∫ k(q∗)/q∗

−∞
ε1g(ε1) dε1

−
∫ ∞

k(q∗)/q∗
Eδ{u′[(f0 + ρε1 + δ̃)q∗ − c(q∗)]}ε1g(ε1) dε1, (16)

where k(q∗) solves

u[f0q
∗ − c(q∗)] = Eδ{u[(f0 + δ̃)q∗ + ρk(q∗)− c(q∗)]}. (17)

It is evident from Eq. (17) that ρk(q∗) is equal to the risk premium of the zero-mean risk,

δ̃q∗, in the usual Arrow-Pratt sense.

Rewrite Eq. (17) as

u[f0q
∗ − c(q∗) + m] = Eδ{u[(f0 + δ̃)q∗ + ρk(q∗) − c(q∗) + m]}, (18)
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where m can be interpreted as endowed wealth that takes on an initial value of zero.

Differentiating Eq. (18) with respect to m and evaluating the resulting derivative at m = 0

yields

∂ρk(q∗)
∂m

∣∣∣∣
m=0

=
u′[f0q

∗ − c(q∗)]− Eδ{u′[(f0 + δ̃)q∗ + ρk(q∗) − c(q∗)]}
Eδ{u′[(f0 + δ̃)q∗ + ρk(q∗)− c(q∗)]}

. (19)

If u(π) satisfies decreasing, constant, or increasing absolute risk aversion (DARA, CARA,

or IARA), ∂ρk(q∗)/∂m is negative, zero, or positive, respectively. Using the fact that ε̃1

has a mean of zero, Eq. (16) can be written as

Φ′(q∗) =
∫ ∞

k(q∗)/q∗

{
(1 + ρ)u′[f0q

∗ − c(q∗)]

−Eδ{u′[(f0 + ρε1 + δ̃)q∗ − c(q∗)]}
}
ε1g(ε1) dε1. (20)

If u(π) satisfies CARA (IARA), Eq. (19) implies that

u′[f0q
∗ − c(q∗)] = (>) Eδ{u′[(f0 + δ̃)q∗ + ρk(q∗)− c(q∗)]}. (21)

Since ρ > 0, Eq. (21) and risk aversion imply that (1 + ρ)u′[f0q
∗ − c(q∗)] > Eδ{u′[(f0 +

δ̃)q∗ + ρk(q∗) − c(q∗)]} > Eδ{u′[(f0 + ρε1 + δ̃)q∗ − c(q∗)]} for all ε1 > k(q∗)/q∗. It then

follows from Eq. (20) that Φ′(q∗) > 0 and thus h∗ > q∗ if u(π) satisfies either CARA or

IARA. The following proposition summarizes these results.

Proposition 4. Given that the competitive firm optimally devises its futures hedge program,

(h∗, k∗), the firm’s optimal futures position, h∗, is an over-hedge, i.e., h∗ > q∗, if the

autocorrelation coefficient, ρ, is positive and the firm’s utility function, u(π), satisfies either

constant or increasing absolute risk aversion.

To see the intuition of Proposition 4, refer to Eqs. (1) and (2). If the firm adopts a

full-hedge, i.e., h = q, its profit at t = 2 remains stochastic due to the residual price risk,

(ρε1+δ̃)q, that arises from the premature closure of its hedge program at t = 1. This creates
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an income effect because the presence of the liquidity risk reduces the attainable expected

utility under risk aversion. To attain the former expected utility level (with no risk), the

firm has to be compensated with additional income. Taking away this compensation gives

rise to the income effect (see Wong, 1997). Under IARA (DARA), the firm becomes less

(more) risk averse and thus is willing (unwilling) to take on the liquidity risk. The firm

as such shorts more (less) of the futures contracts so as to enlarge (shrink) the interval,

[k/h,∞), over which the premature liquidation of the futures position at t = 1 prevails.

Since ρ > 0, inspection of Eqs. (1) and (2) reveals that the high (low) realizations of

the firm’s random profit at t = 2 occur when the futures position is (is not) prematurely

liquidated at t = 1. Being risk averse, the firm would like to shift profits from the high-

profit states to the low-profit states. This goal can be achieved by shorting more of the

futures contracts, i.e., h > q, as is evident from Eqs. (1) and (2). Such an over-hedging

incentive is reinforced (alleviated) under IARA (DARA). Thus, the firm optimally opts for

an over-hedge, i.e., h∗ > q∗, under either CARA or IARA.

A NUMERICAL EXAMPLE

To gain more insights into the theoretical findings, this section constructs a numerical

example to quantity the severity of the endogenous liquidity constraint as inversely gauged

by the optimal liquidation threshold, k∗.

Suppose that the firm has a negative exponential utility function: u(π) = −e−γπ , where

γ > 0 is the constant Arrow-Pratt measure of absolute risk aversion. For simplicity, the firm

produces one unit of output at zero production costs. The underlying random variables, ε1

and δ, are both normally distributed with means of zero and variances of 0.01. The initial

futures price, f0, is set equal to unity. Table I reports the optimal short futures position, h∗,

and the optimal liquidation threshold, k∗, for different values of the risk aversion coefficient,

γ, and the autocorrelation coefficient, ρ.
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TABLE I
Optimal Futures Positions and Liquidation Thresholds

γ = 1 γ = 2 γ = 3

h∗ k∗ h∗ k∗ h∗ k∗

ρ = 0.1 1.2313 0.0473 1.0738 0.0997 1.0188 0.1485
ρ = 0.2 1.5103 0.0185 1.2385 0.0472 1.1349 0.0737
ρ = 0.5 2.1670 0.0036 1.6292 0.0121 1.4354 0.0243

Note. This table reports the optimal futures position, h∗, and the optimal liquidation
threshold, k∗. The firm has a negative exponential utility function: u(π) = −e−γπ , where γ

is a positive constant. The firm produces one unit of output at zero production costs. The
underlying random variables, ε1 and δ, are normally distributed with means of zero and
variances of 0.01. The initial futures price, f0, is set equal to unity.

Table I shows that an over-hedge, i.e., h∗ > 1, is optimal, which is consistent with

the findings in Proposition 4. It is also evident from Table I that k∗ decreases as either ρ

increases or γ decreases. That is, the firm is willing to commit itself to a more aggressive (i.e.,

severe) liquidity constraint provided that premature liquidation is indeed ex-post profitable

or that the firm is less risk averse and thus does not mind to take on excessive risk.

CONCLUSION

This paper has examined the optimal design of a futures hedge program for the competitive

firm under output price uncertainty à la Sandmo (1971). To hedge its output price risk

exposure, the firm trades unbiased futures contracts that are marked to market and require

interim cash settlement of gains and losses. The futures price dynamics follows a first-order

autoregression that includes a random walk as a special case.

This paper has shown that the firm’s futures hedge program contains an optimal pro-

vision for premature termination if the futures prices are positively autocorrelated. Fur-
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thermore, the liquidity constrained firm optimally opts for an over-hedge if its preferences

exhibit either constant or increasing absolute risk aversion. Since a positive autocorrelation

implies that a loss from a futures position tends to be followed by another loss from the

same position, the firm finds premature liquidation of its futures position to be ex-post

optimal. The severity of the liquidity constraint as such is chosen by the firm to strike a

balance between ex-ante and ex-post efficient risk sharing. However, if the futures prices

are uncorrelated or negatively autocorrelated, premature liquidation of the futures position

is never ex-post optimal. In this case, the firm prefers to be liquidity unconstrained and

thus adopts a full-hedge to completely eliminate the output price risk.

APPENDIX

The firm’s ex-ante decision problem is to choose a futures position, h, so as to maximize

the expected utility of its random profit at t = 2, EU :

∫ k/h

−∞
Eδ[u(π̃c)]g(ε1) dε1 +

∫ ∞

k/h
Eδ[u(π̃`)]g(ε1) dε1, (A.1)

if h > 0, and

∫ k/h

−∞
Eδ[u(π̃`)]g(ε1) dε1 +

∫ ∞

k/h
Eδ[u(π̃c)]g(ε1) dε1, (A.2)

if h < 0, where π̃` and π̃c are defined in Eqs. (1) and (2), respectively. In order to solve

the firm’s optimal futures position, h∗, one has to know which equation, Eq. (A.1) or Eq.

(A.2), contains the solution.

Consider first the case that h > 0. Differentiating EU as defined in Eq. (A.1) with

respect to h and evaluating the resulting derivative at h → 0+ yields

lim
h→0+

∂EU

∂h
= −

∫ ∞

−∞
Eδ{u′[(f0 + ε1 + ρε1 + δ)q − c(q)](ε1 + ρε1 + δ)}g(ε1) dε1. (A.3)

Since ε1 and δ has means of zero, the right-hand side of Eq. (A.3) is simply the negative

of the covariance between u′[(f0 + ε1 + ρε1 + δ)q − c(q)] and ε1 + ρε1 + δ with respect to
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the joint probability density function of ε1 and δ. It then follows from u′′(π) < 0 that

limh→0+ ∂EU/∂h > 0.

Now, consider the case that h < 0. Differentiating EU as defined in Eq. (A.2) with

respect to h and evaluating the resulting derivative at h → 0− yields

lim
h→0−

∂EU

∂h
= −

∫ ∞

−∞
Eδ{u′[(f0 + ε1 + ρε1 + δ)q − c(q)](ε1 + ρε1 + δ)}g(ε1) dε1. (A.4)

Inspection of Eqs. (A.3) and (A.4) reveals that limh→0+ ∂EU/∂h = limh→0− ∂EU/∂h > 0.

Since EU as defined in either Eq. (A.1) or Eq. (A.2) is strictly concave, the firm’s optimal

futures position, h∗, must be a short position, i.e., h∗ > 0.
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