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1 Introduction

In this paper we examine the implications of a particular theory of social
preferences–inequality aversion (Fehr and Schmidt, 1999)–for Stackelberg
duopoly experiments. In the experiments with Stackelberg quantity competi-
tion conducted by Huck et al. (2001), the outcome predicted by conventional
theory (in which each player cares only about her material payoff) is rarely ob-
served. Specifically, in one set of their random-matching experiments, in which
anonymous subjects are randomly assigned the roles of leaders and followers
in a Stackelberg game and the design ensures that each pair of players interact
once, there are two major features inconsistent with conventional prediction.
Conventional theory predicts that a follower, after observing the leader’s out-
put level, would react according to a downward-sloping best response function
with a particular value of the slope. However, the followers behave according
to this best response function in only 50.9% of the experiments. 1 On average,
the followers behave less timidly than predicted, with the estimated response
function less steep than the conventional one. Conventional theory also pre-
dicts that the Stackelberg leader would take the first-mover advantage and set
the level of output at the profit-maximizing level. However, the leaders choose
that value in less than 30% of the experiments. On average, the leaders behave
less aggressively than predicted, with the average output level “between the
subgame-perfect equilibrium and the symmetric Cournot equilibrium predic-
tion” (Huck et al., 2001, p. 757).

After presenting the experimental evidence, Huck et al. (2001) suggest that
the inequality aversion model of Fehr and Schmidt (1999) may be helpful
in explaining the subjects’ behavior. They follow Fehr and Schmidt (1999)
and postulate that some players have non-standard preferences in that they
maximize a utility function consisting of material payoff and inequality aver-
sion components. They argue that the Fehr and Schmidt (1999) model makes
two predictions about the quantity-setting Stackelberg game. First, a follower
chooses a quantity in the interval from the leader’s choice to the best response
against the leader’s choice. Second, a leader chooses a quantity in the range
from the profit-maximizing level to the collusive level.

1 This number, which is not found in Huck et al. (2001), is calculated by us based on
the data set provided by Steffen Huck. We are grateful to their kindness. Note that
the major objective of Huck et al. (2001) is to use experimental evidence to compare
the Cournot and Stackelberg quantity-setting duopoly markets; in particular, they
examine a prediction (due to Daughety, 1990) that the total output level (and
welfare) is higher in the Stackelberg market. They study the random-matching and
fixed-matching treatments of both markets, and they mainly present the average
level of output of the leaders and the followers. On the other hand, we focus on
individual behavior of one set of their experiments–the Stackelberg games with
random matching (“STACKRAND” in their notation).
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In deriving the predictions about Stackelberg duopoly experiments, Huck et
al.’s (2001) describe the entire range of equilibrium outcomes consistent with
the Fehr and Schmidt (1999) model without specifying the distributions of
players’ inequality aversion parameters. While we share with their conjecture
that inequality aversion may be important in explaining the behavior in these
experiments, we think it is possible to obtain sharper predictions if one per-
forms an analysis based on more specific distributions of the inequality aver-
sion parameters. In this sense, this paper aims to complement their study. Be-
sides providing sharper predictions of the quantity-setting Stackelberg game,
an important contribution of this paper is that with the proposed model we
are able to derive analytically the best response functions of different Stack-
elberg followers. These derivations lead naturally to a maximum-likelihood
framework to test empirically the predictions of the model.

As indicated in the title of this paper, we aim to provide a parsimonious expla-
nation based on inequality aversion. In scientific investigation, a parsimonious
explanation has desirable properties since the effect of the factors under in-
vestigation is not confounded by other factors. Besides this general virtue, in
the context of Stackelberg duopoly experiments, as the following analysis il-
lustrates, the analysis with inequality aversion can be quite long and involved
even for the relatively simple model considered in this paper, and will be more
tedious for complicated models incorporating additional features. To overcome
this problem, we choose to work with a simple model, and our approach is to
select the assumptions supported by behavioral intuition and empirical evi-
dence. Specifically, we model inequality aversion in the simplest way by (a)
assuming that a proportion of the players has non-standard preferences, and
that the non-standard preferences consist of disadvantageous inequality aver-
sion but no advantageous inequality aversion; and (b) assuming that agents
with such non-standard preferences will have the same disadvantageous in-
equality aversion parameter. This specification, while retaining the spirit of
the Fehr and Schmidt (1999) model, simplifies the analysis substantially.

Our analysis of the simplified Fehr-Schmidt model reveals that even a small
proportion of players with non-standard preferences is enough to cause non-
Stackelberg outcomes, as well as that the Cournot outcome (in which the
Stackelberg leader does not exploit the first-mover advantage at all) can arise
rather easily. Compared with the conventional theory, this parsimonious model
provides more accurate predictions of Stackelberg duopoly experiments. Based
on the experimental results in Huck et al. (2001), we estimate that almost 40%
of the Stackelberg followers have non-standard preferences and the disadvan-
tageous inequality aversion parameter is very high and is significantly different
from zero.

This paper is organized as follows. In Section 2 we summarize the behavior
in Stackelberg duopoly experiments that conventional theory fails to explain
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and we propose a simple model. In Section 3 we derive the followers’ best
response functions. In Section 4 we study the leaders’ behavior. In Sections 5
and 6 we compare the theoretical predictions with the laboratory evidence in
Huck et al. (2001). We provide the concluding remarks in Section 7. We focus
on economic intuitions in the main text, and leave the technical details in the
Appendix.

2 The behavior to be explained, and the proposed model

In the experimental Stackelberg duopoly with quantity competition consid-
ered in this paper, a player–the Stackelberg leader L–commits her output
level first. Knowing the choice of the leader, the other player–the Stackelberg
follower F–selects her output. The profit (or material payoff) of player i is
given by

zi = zi (qi, qj) = (max {d− qi − qj , 0}− g)× qi, (1)

where i, j = L, F (j 6= i), qi is the output level of player i, and d > g ≥ 0. One
interpretation of (1) is that the price of a homogenous product either depends
linearly on the sum of the two players’ outputs or is zero (if the sum of the
outputs is too high), and g is the constant marginal cost. Note that except for
the different roles of the leader and follower, the two players are symmetric
with the same material payoff function. In Huck et al. (2001), d = 30 and
g = 6.

In our theoretical analysis, we assume that each player chooses the output
level within a closed interval

qi ∈
h
q, q

i
, (2)

where q = 0 and q = d−g
2
≡ h

2
. Note that within this interval, we have 2

max {d− qi − qj , 0}− g = h− qi − qj ≥ 0. (3)

We first summarize the conventional predictions regarding the above game.
According to conventional theory, each player chooses her output to maximize
her material payoff, given the behavior of her opponent. The subgame-perfect
equilibrium predicted by conventional theory is as follows. Observing the level
of output qL selected by the leader, the Stackelberg follower chooses qF to

2 An implication of (A6a) in the Appendix and (11c) is that assuming q = h
2 is

not restrictive since output level higher than h
2 will not be chosen by the players.

Allowing for q > h
2 would not lead to different theoretical predictions but would

make the analysis more tedious as we need to keep track of whether h− qL − qF is
positive or not at different output levels.
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maximize zF = qF (h− qL − qF ). It is straightforward to show that the best
response function of the follower of this quantity game is given by

qSF (qL) =
h

2
− qL
2
. (4)

We refer to the followers with “standard” preferences as type S followers. The
best response function of type S followers is given in the upper panel of Figure
1. Anticipating that a follower will respond according to (4), the leader chooses
qL to maximize zL

³
qL, q

S
F (qL)

´
. The optimal choice of the leader is given by

h
2
. Following Huck et al. (2001), we refer to this level as the “profit-maximizing
Stackelberg leader quantity.”

While the conventional theory may be insightful in predicting behavior in some
situations (such as R&D races in which history dictates who is the leader
and follower), it is inconsistent with the experimental evidence in Huck et
al. (2001). As mentioned in the Introduction, we focus on two anomalies of
Stackelberg duopoly experiments with random matching in their paper. First,
the estimated response function of the followers is much flatter than predicted.
The estimated slope is significantly different from the predicted value of -0.5
given in (4). It is also significantly different from the predicted value of -0.49
for the discretized game in Huck et al. (2001); see their footnote 9. Second,
the profit-maximizing Stackelberg leader quantity (h

2
= 12) is only chosen in

27.3% of the 220 cases. The evidence is even worse if we focus on experienced
players (by looking at the outcomes of Round 9, the second last round), who
choose the profit-maximizing Stackelberg leader quantity in 13.6% of the trials.
The average output level of the leaders is 10.19, almost 2 units below the
profit-maximizing Stackelberg leader quantity. To summarize, according to
the experimental evidence in Huck et al. (2001, Result 2), the Stackelberg
leaders behave less aggressively than predicted, and the followers behave less
timidly than predicted.

To explain these two anomalies, we consider an inequality aversion model (Fehr
and Schmidt, 1999) in which each of the players cares about the absolute level
of her payoff as well as how her payoff compared with her opponent’s; see
also Bolton (1991) and Bolton and Ockenfels (2000). The inequality aversion
model, which has a relative payoff component, is particularly useful in ex-
plaining experimental evidence since the reference groups and outcomes in
this context are reasonably clear. As mentioned in Fehr and Schmidt (1999, p.
822): “The subjects enter the laboratory as equals, they do not know anything
about each other, and they are allocated to different roles in the experiment
at random. Thus, it is natural to assume that the reference group is simply
the set of subjects playing against each other and that the reference point,
i.e., the equitable outcome, is given by the egalitarian outcome.”

In Fehr and Schmidt (1999) and Huck et al. (2001, Section 4), agents with non-
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standard preferences have both aversion to disadvantageous and advantageous
inequality components. Moreover, the distribution of individuals with different
inequality aversion parameters can be quite general; see Table III of Fehr and
Schmidt (1999) for an example. In order to provide a parsimonious explanation
as well as to avoid unnecessarily tedious analysis, we focus on a simplified
version of their model by making two modifications.

Following Fehr and Schmidt (1999), we assume that some players have the
standard preferences as defined by the material payoff function in (1), but
inequality aversion matters for the other players. We assume that proportion
p of the players have non-standard preferences (called type N players) and the
remaining proportion 1− p have standard preferences, 3 where

0 ≤ p ≤ 1. (5)

Our first simplification of Fehr and Schmidt (1999) is that we assume type N
players care about disadvantageous but not advantageous inequality aversion.
Specifically, a type N player’s utility level depends on her material payoff
as well as a term capturing utility loss from disadvantageous inequality, as
follows:

Ui = Ui (zi, zj) = zi − αimax {zj − zi, 0} , (6)

where αi is the disadvantageous inequality aversion parameter, and zi is player
i’s material payoff given in (1). In general, both disadvantageous and ad-
vantageous inequality aversion may be important. However, according to the
experimental evidence in Messick and Sentis (1985) and Loewenstein et al.
(1989), the subjects exhibit an aversion to advantageous inequality which is
significantly weaker than the aversion to disadvantageous inequality. 4 In light
of these experimental evidence, we only consider aversion to disadvantageous
inequality in our theoretical analysis.

Our second simplification of Fehr and Schmidt (1999) is that we specify a sim-
ple distribution of the disadvantageous inequality aversion parameters. We as-
sume that for players with non-standard preferences, their inequality aversion
parameter is the same. That is, αi = a for all type N players, where

a > 0. (7)

3 Note that the conventional “self-interested” model is just a special case of the
simplified Fehr-Schmidt model in that all players belong to the standard type. In
Section 6 we test the null hypothesis that all players have the standard preferences
against the alternative hypothesis of the simplified Fehr-Schmidt model.
4 In the statistical analysis in Sub-section 6.2, we also allow for aversion to ad-
vantageous inequality. However, the estimated advantageous inequality aversion pa-
rameter is much smaller than the estimated disadvantageous inequality aversion
parameter, and the null hypothesis that the advantageous inequality aversion para-
meter is 0 is not rejected.
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To summarize, the utility function of a typeN or type S player in the simplified
Fehr-Schmidt model can be represented by (6), if we allow the disadvantageous
inequality aversion parameter to be either positive or zero. Furthermore, the
players’ inequality aversion parameters in this model are distributed according
to

Pr (αi = a) = p; Pr (αi = 0) = 1− p. (8)

3 Best response functions of the two types of followers

To examine the leaders’ and followers’ behavior in this model, our first step
is to transform (6), in which player i’s utility level depends on zi and zj (the
players’ material payoffs), into a form in which the utility level depends on qi
and qj (the players’ choice variables). Using (1) and (3), we have

max {zj − zi, 0} = (h− qi − qj)max {qj − qi, 0} . (9)

Therefore, player i’s utility can be expressed in terms of the players’ choice
variables as follows:

Vi (qi, qj) = Ui (zi (qi, qj) , zj (qj, qi))

= (h− qi − qj) qi − αi (h− qi − qj)max {qj − qi, 0} . (10)

In this section, we study the optimal response of a Stackelberg follower, af-
ter observing that the leader has chosen qL. As the two types of followers
have different inequality aversion parameters, their best response functions
are different.

The best response function of type S followers is given by (4). On the other
hand, the best response function of type N followers is defined by

qNF (qL) = argmaxqF
VF (qF , qL)

= argmax
qF
[(h− qL − qF ) (qF − αF max {qL − qF , 0})] . (11)

The analysis of the best response function of type N followers is more com-
plicated since the utility loss due to disadvantageous inequality may or may
not be relevant, depending on whether qF is smaller than qL or not. As shown
in the Appendix, the form of the best response function of type N followers
differs with respect to the choice of qL. For convenience in subsequent analy-
sis, we label the intervals

h
q, h

3

i
,
h
h
3
, bqi, and [bq, q] as Regions A, B, and C,
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respectively, 5 where

bq = µ
1 + a

3 + 2a

¶
h. (12)

If a leader chooses a low output level in Region A, it is shown in the Appendix
that it will not be optimal for type N followers to choose qF in

h
q, qL

´
. As a

result, inequality aversion is irrelevant for them. Following similar analysis as
in (4), if qL is in Region A, then the best response function of type N followers
is given by

qNF (qL) =
h

2
− qL
2
. (11a)

Note that h
3
(the highest level of qL in Region A) is the intersection of (11a)

and the 45-degree line (qF = qL). It is also the equilibrium output level of
this game with symmetric utility functions, if both players care only about
material payoff and they move simultaneously. This level is referred to as the
Cournot quantity.

If a leader chooses a high output level outside Region A, it can be shown (in
the Appendix) that it is not optimal for type N follower to choose qF in the
interval (qL, q]. As a result, inequality aversion becomes potentially relevant.
In this case, if qF is set according to (4), then (10) is not maximized because
qF would then be lower than qL, causing a reduction of the follower’s utility
level through the second term in the right-hand side of (10). To reduce the
effect due to disadvantageous inequality, the optimal choice of qF is higher
than that given in (4).

There is a qualitative difference in the behavior of type N followers when the
leader chooses an output level outside Region A. In the Appendix, it is shown
that if qL is in Region B, the best response function of type N followers is
upward sloping given by

qNF (qL) = qL. (11b)

On the other hand, if qL is in Region C, the best response function of type N
followers is downward sloping given by

qNF (qL) =
h

2
− qL
2 (1 + a)

. (11c)

The intuition of the difference in (11b) and (11c) is as follows. There are two
components in UF according to (10) and a type N follower wants to maximize
the first term (material payoff) but minimizes the second term (utility loss

5 Note that h
3 belongs to both Regions A and B and bq belongs to both Regions

B and C. The overlapping endpoints of the different regions do not cause problem
since the functions we focus in subsequent analysis–qNF (qL) in (11a) to (11c), and
WL (qL) in (13a) to (13c)–are piecewise-continuous.
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from disadvantageous inequality). To maximize the material payoff, the best
response of the follower is given by (4). In Region B, whether the follower
uses (4) or (11b), the difference in material payoff is relatively minor but
the difference in the utility loss from inequality aversion is more important.
Therefore, the choice of a type N follower that minimizes the utility loss due
to disadvantageous inequality also maximizes (10), and the follower chooses
(11b). In Region C, the reduction in material payoff if the follower uses (11b)
is relatively large. As a result, minimizing the utility loss due to inequality
aversion cannot compensate for the loss in the material payoff, and it is optimal
for the follower to compromise between these two terms and choose according
to (11c).

The best response function of a type N follower is represented in the lower
panel of Figure 1. There are a number of interesting features. First, this func-
tion is continuous but is piecewise-linear instead of smooth throughout the
interval

h
q, q

i
. Second, the best response function of a type N follower is up-

ward sloping in Region B (with a slope of 1) but is downward sloping in Region
C (and is less steep than Region A). As a result, the best response function
of a type N follower lies above that of a type S follower in these two regions,
meaning that a type N follower responds less timidly to the leader. Third, the
best response function of type S followers is just a special case of that of type
N followers, when parameter a approaches 0.

We summarize the results of this section in the following Proposition.

Proposition 1 The type N Stackelberg followers’ best response function is a
piecewise-linear one given by (11a) to (11c). In Region B (h

3
≤ qL ≤ bq) and

Region C (bq ≤ qL ≤ q), type N followers respond to qL less timidly than type
S followers.

How the Stackelberg leader chooses her output, anticipating the best response
functions of these two types of followers, is given in the next section.

4 The Stackelberg leaders’ behavior

In an experimental setting with both standard and non-standard types of
players, it is natural to assume that an individual knows her type but not the
type of her (anonymous) opponent. Moreover, instead of assuming that all
players know in no uncertain way the value of parameters p and a, we make
the less restrictive assumption that different players may have different beliefs
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of p and a. 6 While the Stackelberg leader does not know the identity of her
opponent, she anticipates that the two types of followers will act according
to (4) and (11), respectively. Conditional on the probability distribution (8),
the Stackelberg leader chooses qL to maximize the following “reduced-form”
utility function:

WL (qL) = E [VL (qL, qF (qL))]

= p× UL
³
qL, q

N
F (qL)

´
+ (1− p)× UL

³
qL, q

S
F (qL)

´
. (13)

Since the form of the best response function of type N followers differ in
Regions A to C, we consider the behavior of the utility function WL (qL) in
each of the three regions and then combine the results.

For Region A (q ≤ qL ≤ h
3
), it can be shown from (4), (11a), (13) and (A4)

that

WL (qL) = W
A
L (qL) =

1

4
(h− qL) [(2 + 3αL) qL − αLh] . (13a)

From (13a), we have

Lemma 1. WA
L (qL) in (13a) is increasing in qL ∈

h
q, h

3

i
. 7

For Region B (h
3
≤ qL ≤ bq), it can be shown from (4), (11b), (13) and (A2)

that

WL (qL) =W
B
L (qL) = qL

·
p (h− 2qL) + 1

2
(1− p) (h− qL)

¸
. (13b)

For Region C (bq ≤ qL ≤ q), one can show from (4), (11c), (13) and (A2) that

WL (qL) =W
C
L (qL) = p

(
h− qL −

"
h

2
− qL
2 (1 + a)

#)
qL+(1− p)

"
h− qL −

Ã
h

2
− qL
2

!#
qL

=

(
h

2
− 1
2

·
2−E

µ
1

1 + αF

¶¸
qL

)
qL, (13c)

where E
³

1
1+αF

´
represents the leader’s expectation of the term

³
1

1+αF

´
. 8

6 Note that we would not be able to explain the diverse choice of qL in this model
with no aversion to advantageous inequality if we assume that all leaders have the
same beliefs of p and a.
7 The upward-sloping feature of functionWA

L (qL) in Region A can be traced to the
presence of strategic substitutability and negative externality in the quantity game.
The underlying reason is the same as that given in the paragraph after Proposition
3.
8 Note that in (13c) αF is interpreted as a random variable, which can take the
value a (for type N followers) with probability p or 0 (for type S followers) with
probability 1− p.

9



It can be shown that each of the functions (13a) to (13c) is quadratic in qL,
and has a negative second derivative. As a result, the reduced-form utility
function WL (qL) is a continuous piecewise-quadratic function in qL ∈

h
q, q

i
(but is non-differentiable at qL = h

3
and qL = bq). From (13a) to (13c) and

Lemma 1, we conclude that

Lemma 2. The disadvantageous inequality aversion parameter (αL) of the
Stackelberg leaders does not affect their optimal choices in the simplified Fehr-
Schmidt model.

We now use the above results to predict the Stackelberg leaders’ choices in
this model.

4.1 The profit-maximizing Stackelberg leader quantity is not chosen

According to conventional theory with the assumptions that each player max-
imizes her material payoff, the Stackelberg leader is predicted to choose the
profit-maximizing Stackelberg leader quantity h

2
. On the other hand, the sim-

plified Fehr-Schmidt model predicts that the profit-maximizing Stackelberg
leader quantity will not be chosen if there are some type N players. 9 This is
given in the following Proposition.

Proposition 2. The profit-maximizing Stackelberg leader quantity (h
2
) will

not be chosen in the simplified Fehr-Schmidt model, if p is strictly positive.

4.2 To exploit or not to exploit the first-mover advantage

A corollary of Lemma 1 is that the Stackelberg leader would not choose an
output level in the interval

h
q, h

3

´
, as any choice in this interval is dominated

by qL = h
3
. According to Proposition 2, she would not choose the profit-

maximizing Stackelberg leader quantity (h
2
) if she expects that some followers

are averse to disadvantageous inequality. Any choice in
h
h
3
, h
2

´
is still possible.

Among these possible choices, the leader’s payoff at the Cournot quantity
(qL = h

3
) is the same as the follower’s, but her payoff when qL ∈

³
h
3
, h
2

´
is higher

than the follower’s. Thus, one can interpret that the leader of the quantity-
setting Stackelberg game exploits the first-mover advantage if qL ∈

³
h
3
, h
2

´
, but

does not exploit the first-mover advantage if qL = h
3
. In this sub-section, we

9 Note that this result is derived on the assumption that the output choice is contin-
uous. In footnote 14 we comment on this result if the choice variable is discretized,
as in the experiments of Huck et al. (2001).
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study the conditions under which the leader will (or will not) exploit the first-
mover advantage. The question is also motivated by the empirical evidence in
Huck et al. (2001). The conventional theory predicts that the leaders would
never choose the Cournot quantity. However, in 17.3% of the cases, the leaders
choose the Cournot quantity. For more experienced Stackelberg leaders (in
Round 9), the Cournot quantity is observed in 22.7% of the trials.

In the following Proposition we obtain the necessary and sufficient conditions
for the Stackelberg leader to choose the Cournot outcome and not to exploit
the first-mover advantage. For convenience, we assume that if a leader is indif-
ferent between choosing the Cournot outcome and exploiting the first-mover
advantage, then she always chooses the Cournot outcome.

Proposition 3. (a) A necessary condition for the Stackelberg leader to choose
the Cournot quantity (h

3
) in the simplified Fehr-Schmidt model is

p ≥ 1
3
. (14)

(b) The necessary and sufficient conditions for the Stackelberg leader to choose
the Cournot quantity in this model are (14) and

E
µ

1

1 + αF

¶
≤ 7
8
. (15)

Proposition 3(a) is closely related to the different behavior of the two types of
followers in Region B–type S followers responds negatively to qL according
to (4), and type N followers responds positively to qL according to (11b). A
necessary condition for the Cournot quantity (h

3
) to be chosen by the leader

is that this value is not dominated by any other choice in Region B, or equiv-
alently, WL (qL) is downward sloping in Region B. According to (13), the
leader’s utility function WL (qL) is a weighted average of UL

³
qL, q

N
F (qL)

´
and

UL
³
qL, q

S
F (qL)

´
. If all followers are of the standard type, it is easy to see that

UL
³
qL, q

S
F (qL)

´
is upward sloping in Region B. This is because with only type

S followers, strategic substitutability is present since the follower will respond
negatively to qL according to (4). We also know that negative externality is
present in the relevant region of this quantity game. Using the terminology
in Fudenberg and Tirole (1984), this is the “top dog” case (with negative ex-
ternality and strategic substitutability). 10 From Fudenberg and Tirole (1984)

10 Besides the various examples on industrial organization cited in Fudenberg and
Tirole (1984), the importance of the sign of externality effect and the slope of
the reaction function has also been discussed in many other situations, such as the
relative payoffs of the Stackelberg leader and follower (Gal-Or, 1985; Dowrick, 1986)
and macroeconomic coordination failures (Cooper and John, 1988).
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and, especially, Lau (2001, Table 4), we know that the Stackelberg leader
wants to increase qL, or equivalently, UL

³
qL, q

S
F (qL)

´
is upward sloping in

Region B. Because of negative externality, the leader wants to induce the fol-
lower to set a lower output; to achieve that, the leader wants to set a higher
output since strategic substitutability is present. On the other hand, if all
followers are of type N , they will respond positively to qL. That is, strate-
gic complementarity is present in Region B. This maps into the “puppy dog”
case (with negative externality and strategic complementarity) of Fudenberg
and Tirole’s (1984) classification. According to Lau (2001, Table 4), the util-
ity function UL

³
qL, q

N
F (qL)

´
is downward sloping in Region B (and thus the

Stackelberg leader wants to decrease qL). Combining these results, Proposition
3(a) has the intuitive appeal that the proportion of type N followers has to
be higher than some threshold value (1

3
) in order that the function WL (qL)

becomes downward sloping in Region B.

The intuition of Proposition 3(b) can be seen graphically. In Figure 2, we
assume for convenience that there is a upper limit a for the aversion to
disadvantageous inequality parameter. According to Proposition 3(b), the
Cournot quantity is chosen when (14) and (15) are satisfied. Using E

³
1

1+αF

´
=

p
³

1
1+a

´
+ (1− p), it is easy to see that (15) is equivalent to

a ≥ 1

8p− 1 . (15a)

In terms of Figure 2, the leader would not exploit the first-mover advantage
inside the area GHIJ , where the segmentHI is represented by the downward-
sloping line a = 1

8p−1 . According to Proposition 3(b), the leader would still
exploit the first-mover advantage if the departure of standard preference in
the direction of aversion to disadvantageous inequality is small, in the sense
that either a or p is small. On the other hand, when at least a third of the
players belongs to type N (p ≥ 1

3
) and the inequality aversion parameter is

reasonably far away from 0 (a ≥ 1
8p−1), the leader would choose the Cournot

quantity and not exploit the first-mover advantage.

Is it likely that the Stackelberg leaders do not exploit the first-mover advantage
according to the above model? Suppose that a Stackelberg leader thinks that
half of the players are of type N , then she would not exploit the first-mover
advantage if she expects a ≥ 1

3
according to (15a). If she expects that one-

third of the players are of type N , then parameter a needs to be higher (since
a = 1

8p−1 is decreasing in p) for her not to exploit the first-mover advantage.
Specifically, the critical value is a = 0.6. Relating parameter a to the more
familiar ultimatum game (in which a player, the Proposer, makes a take-it-or-
leave-it offer to the Responder of how to divide a fixed amount), a ≥ 0.6means
that a type N Responder is willing to reject the Proposer’s offer up to 27% of
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the fixed amount. 11 On the other hand, a ≥ 1
3
means that a type N player

is willing to give up the offer if the Proposer offers to her an amount equal
to or smaller than $2 (out of a fixed amount of $10). Numerous experimental
evidence shows that a substantial number of Responders of the ultimatum
game have actually turned down such offers (see Fehr and Schmidt (1999),
Fehr and Gächter (2000), Camerer 2003, and the references therein). 12 An
implication of these laboratory evidence is that many Stackelberg leaders may
not exploit the first-mover advantage even if they anticipate that the extent
of disadvantageous inequity aversion is quite moderate (e.g., p = 0.5 and
a = 0.5), according to the simplified Fehr-Schmidt model.

5 Explaining the experimental results

We now examine whether the predictions of the simplified Fehr-Schmidt model
provide a good explanation of the outcomes in the experimental Stackelberg
duopoly (Huck et al., 2001), and compare the predictions with those of the
conventional theory. We also briefly comment on how these predictions com-
pare with those of Huck et al. (2001, Section 4) in which the distributions of
the inequality aversion parameters are not specified.

The conventional theory predicts that the followers would respond according
to (4). In Huck et al. (2001), the followers respond according to the discretized
version of (4) only in 50.9% of the experiments. The other half does not be-
have accordingly. On average, they behave less timidly. This is exactly what
Proposition 1 predicts. According to it, type N followers would behave less
timidly in Region B and C because they dislike disadvantageous inequality. A
corollary of Proposition 1 is that in a population with both types of followers,
the estimated linear best response function has a flatter slope, consistent with
the evidence in Table 6 of Huck et al. (2001). 13

Regarding the leaders’ choice, conventional theory predict that they would
choose the profit-maximizing Stackelberg leader quantity (h

2
= 12) for the

quantity-setting game. However, the leaders in Huck et al. (2001) make this

11 Suppose that the fixed amount is $10, and the Proposer offers $s (s > 5) to
the Responder and keeps the remaining. A type N Responder would be indifferent
about accepting or rejecting this offer when 0 = s− a [(10− s)− s]. Therefore, the
critical value of s is given by 10a

1+2a .
12 For example, based on the outcomes across hundreds of trials, Fehr and Gächter
(2000, p. 161) conclude that “Proposers who offer the Responder less than 30 percent
of the available sum are rejected with a very high probability.”
13 In Sub-section 6.3 we will comment on the appropriateness of using the esti-
mated slope and intercept of a linear regression model to test the conventional
self-interested model, and we will suggest an alternative method.
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choice only for 27.3% of the experiments. For more experienced players (in the
second last round), the corresponding number is even lower at 13.6%. On the
other hand, our parsimonious model suggests that the leader would behave
less aggressively by choosing a lower output level, because of the fear that
type N followers will behave less timidly than type S followers. Specifically,
Lemma 1 and Proposition 2 imply that the leader may choose qL ∈

h
h
3
, h
2

´
depending on her expectation of the term

³
1

1+αF

´
. The prediction that qL is

between 8 to 11 fits 50.9% of the experiments in Huck et al. (2001). If we
consider the evidence of more experienced players, the prediction fits 72.8%
of the cases. 14 Judging from the leaders’ choice, the simplified Fehr-Schmidt
model also performs better than the conventional theory.

Huck et al. (2001, Section 4) make two predictions of the Stackelberg duopoly
based on the Fehr and Schmidt (1999) model without specifying a distribution
about the inequality aversion parameters. First, they predict that the followers’
choice are between qL and the (conventional) best response to qL. Based on a
model with only disadvantageous inequality aversion and only one value of a
for players with non-standard preferences, we obtain a sharper prediction of
the best response function for the followers with non-standard preferences. As
given in (11a) to (11c), it is first downward sloping, then upward sloping and
then downward sloping again.

Huck et al. (2001) also predict that the Stackelberg leader’s choice is be-
tween the collusive quantity (h

4
in this quantity-setting game) and the profit-

maximizing Stackelberg leader quantity. There are two differences between
their predictions and ours. The first difference is that the profit-maximizing
Stackelberg leader quantity is not chosen in our model (Proposition 2) if
the choice variable is continuous. The second difference is that in this model
with no aversion to advantageous inequality, the Stackelberg leader would not
choose qL < h

3
. Thus, our prediction is inconsistent with 10% of the trials in

Huck et al. (2001) in which qL is between 3 to 7. 15 This is the price, arguably
a relatively small one, we have to pay for this simplified Fehr-Schmidt model.

14 The predictions are even better if we allow for the fact that Huck et al. (2001)
use a discretized version of the quantity-setting game. While the leaders would not
choose qL = h

2 according to our model if the output variable is continuous, it is
possible that a leader with an optimal qL ∈ (11, 12) would choose qL = 12 in the
discretized game if WL (11) < WL (12). For the discretized game, the prediction
that qL is between 8 to 12 fits 78.2% (and 86.4% for more experienced players) of
the experiments in Huck et al. (2001).
15 The predictions of the leaders’ behavior are also inconsistent with 11.8% of the
trials in which qL is between 13 and 15. However, the behavior in these trials cannot
be explained even if aversion to advantageous inequality is present.
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6 Formal tests of the simplified Fehr-Schmidt model

As a major motivating factor of introducing the simplified Fehr-Schmidt model
is to explain the anomalies in Huck et al.’s (2001) experiments, in Section
5 we focus on the predictions of the model regarding these anomalies. As
such, other testable implications of the model have not been explored there.
A logical next step is to see whether we can rigorously test the predictions
of this social-preferences model, just like the implications of the conventional
self-interested model have been examined in the literature. We show in this
section that our theoretical analysis can be used to develop formal statistical
testing procedures to examine the validity of these predictions.

In this section we focus on the behavior of the experimental Stackelberg fol-
lowers. As shown in the analysis of Section 4, the predicted action of the
Stackelberg leader depends on her expectation of the follower’s type. Thus,
any test about these predictions is a joint test of the underlying theoretical
structure and the assumed expectations formation mechanism. On the other
hand, the predictions about the follower’s choice in Section 3 is purely based
on the assumed behavioral model, since the follower has already observed the
leader’s action. In the following analysis we focus on the clean predictions
about the followers’ behavior, which is based on their preferences only and is
not confounded by other auxiliary assumptions.

6.1 The likelihood function of a sample of Stackelberg followers’ choices

To obtain the maximum likelihood estimates of the parameters of the simpli-
fied Fehr-Schmidt model, we first derive the likelihood function of observing
the followers’ choices conditional on the leaders’ actions in a sample of n inde-
pendent experimental trials as described in Section 2. In the statistical model
we interpret that the theoretical predictions in Section 3 form the system-
atic part of the followers’ behavior, and we introduce a random error term to
capture other unspecified influences on their behavior.

In the following analysis we use x and y to stand for qL and qF , respectively.
Let xi and yi represent, respectively, the leader and follower’s choices for the
i-th (i = 1, ..., n) observation. If the follower in the i-th trial has standard
preferences, then

yi = q
S
F (xi) + εi, (16)

where the best response function qSF (.) is given by (4) and the random error
εi is assumed to be independently and identically distributed according to a
normal distribution N (0, σ2). On the other hand, if the follower in the i-th
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trial has non-standard preferences, then

yi = q
N
F (xi) + εi, (17)

where the best response function qNF (.) is given by (11a) to (11c), depending
on the value of the leader’s choice xi.

According to our model, the population of Stackelberg followers consists of pro-
portion 1−p of players with standard preferences, and proportion p of players
with non-standard preferences. Thus, from an econometrician’s perspective,
the probability density of observing yi (conditional on xi and parameters a, p
and σ) is given by

(1− p)× fS (yi|xi; σ) + p× fN (yi|xi; a,σ) , (18)

where fS (yi| xi; σ) is the probability density of observing yi when the fol-
lower has standard preferences, and fN (yi|xi; a, σ) is the probability density
of observing yi when the follower has non-standard preferences.

From now on, simply write fS (yi|xi; σ) as fS (yi) and fN (yi| xi; a, σ) as fN (yi).
From (16), (17), (4) and (11a) to (11c), it is easy to obtain 16

fS (yi) =
1√
2πσ2

exp

−
³
yi − h

2
+ xi

2

´2
2σ2

 , (19)

and

fN (yi) = fS (yi)
1−DB(xi)−DC(xi) × fB (yi)DB(xi) × fC (yi)DC(xi) , (20)

where

DB (xi) =

 1 if
h
3
< xi ≤

³
1+a
3+2a

´
h

0 otherwise
, (21)

DC (xi) =

 1 if
³
1+a
3+2a

´
h < xi

0 otherwise
, (22)

fB (yi) =
1√
2πσ2

exp

"− (yi − xi)2
2σ2

#
, (23)

16 In the theoretical analysis, we restrict q = h
2 to simplify the derivation; see foot-

note 2. However, we allow x > h
2 in the statistical analysis (with h = 24), since

11.8% of the leaders in Huck et al. (2001) choose x > h
2 = 12. The conclusions of

our statistical analysis remain unchanged whether we include the trials with x > 12
or not.
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and

fC (yi) =
1√
2πσ2

exp

−
³
yi − h

2
+ xi

2(1+a)

´2
2σ2

 . (24)

Therefore, the (log) likelihood function of observing a sample of n independent
Stackelberg experiments is given by:

lnL (a, p, σ; (x1, y1) , ..., (xn, yn))

=
nX
i=1

ln
n
(1− p) fS (yi) + p

h
fS (yi)

1−DB(xi)−DC(xi) fB (yi)
DB(xi) fC (yi)

DC(xi)
io
.

(25)

The maximum likelihood estimates of the parameters of the simplified Fehr-
Schmidt model are obtained by maximizing the log likelihood function (25).
Even though (25) is highly nonlinear, the estimates can easily be obtained by
standard optimization procedures. Applying it to the random-matching Stack-
elberg experiments of Huck et al. (2001), the maximum likelihood estimates
are given in Table 1. 17 In particular, the estimates of p and a are 0.386 and
5.231, respectively.

Before performing further statistical analysis regarding these estimation re-
sults, we examine in the next sub-section whether the simplified Fehr-Schmidt
model is adequate or not when compared with a more general specification
including aversion to advantageous inequality.

6.2 Is aversion to advantageous inequality unimportant?

In the analysis of earlier sections, we omit aversion to advantageous inequal-
ity. To see whether this omission is appropriate or not, we now compare our

17 There are two caveats in applying the likelihood function (25) to the Huck et al.
(2001) data. First, this likelihood function is derived for the material payoff functions
given by (1), but the payoff structure in Huck et al.’s (2001) experiments has been
modified slightly to assure uniqueness of the equilibrium; see p. 753 of their paper.
Second, the derivation of (25) is based on n (=220) independent trials. However, the
random-matching Stackelberg experiment data set in Huck et al. (2001) consists of
22 pairs of players, each with 10 trials. If we had the coding of individual subjects,
it might be better to assume that the same follower would use either (16) or (17)
in all 10 trials. Unfortunately, such detailed information for this data set has been
discarded (private communication). The best we can do in this situation is to use
(25), and this can still be justified if we make the (perhaps more controversial)
assumption that a follower may use (17) with probability p and (16) with probability
1− p in different trials.
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parsimonious model with a more general model with aversion to advantageous
inequality as well. In this case, the follower’s payoff function is given by:

UF = UF (zF , zL) = zF − αF max {zL − zF , 0}− βF max {zF − zL, 0} , (26)

where βF is the advantageous inequality aversion parameter. Moreover, instead
of (8), we assume

Pr (αF = a & βF = b) = p; Pr (αF = βF = 0) = 1− p (27)

where p and a are given in (5) and (7) respectively, and

b ≥ 0. (28)

Following similar steps as before, it can be shown that the log likelihood
function corresponding to this model is given by

lnL =
nX
i=1

ln
n
(1− p) fS (yi) + p

h
fA (yi)

1−DB(xi)−DC(xi) fB (yi)
DB(xi) fC (yi)

DC(xi)
io
,

(29)
where

fA (yi) =
1√
2πσ2

exp

−
³
yi − h

2
+ xi

2(1−b)
´2

2σ2

 , (30)

DB (xi) =

 1 if
³
1−b
3−2b

´
h < xi ≤

³
1+a
3+2a

´
h

0 otherwise
, (31)

and fS (yi), fB (yi), fC (yi) and DC (xi) are the same as before.

The maximum likelihood estimates of this model are given in Table 1. It is
noted that the estimated value of b is very small (0.156) and the other esti-
mates are very close to those of our parsimonious model. To test formally the
hypothesis that aversion to advantageous inequality is absent (i.e., b = 0), we
construct the usual test statistic t = bb

se(bb) , where bb is the maximum likelihood
estimate of b, and se

³bb´ is the standard error. Under the null hypothesis b = 0,
this test statistic has a standard normal distribution asymptotically. Based on
the estimated results in Table 1, it is easy to conclude that the null hypothesis
b = 0 is not rejected at, say, a 5% significance level. 18

18 It is easy to conclude from Table 1 that the same conclusion is obtained if we use
the likelihood ratio test.
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6.3 Testing the self-interested model against the simplified Fehr-Schmidt model

Huck et al. (2001) examine the conventional self-interested model by using a
linear regression model of the followers’ choices. The estimated intercept and
slope (in their Table 6) are significantly different from the conventional pre-
dictions. In their specification the null hypothesis of the self-interested model
is tested against an alternative model with a linear best response function
different from the conventional prediction. However, it is not clear what the
behavioral model corresponding to this alternative hypothesis is.

Guided by the theoretical analysis in Section 3, we believe that a better way to
examine the validity of the self-interested model is to use the simplified Fehr-
Schmidt model (instead of an unspecified model with a linear best response
function) to nest the self-interested model. To test the null hypothesis of the
self-interested model against the alternative hypothesis of the simplified Fehr-
Schmidt model, we obtain the likelihood function under the null hypothesis
as

lnL (σ; (x1, y1) , ..., (xn, yn)) =
nX
i=1

ln [fS (yi)] , (32)

where fS (yi) is given by (19). The maximum likelihood estimates of this model
for the Huck et al. (2001) data is given in Table 1.

To test the null hypothesis of the self-interested model against the simplified
Fehr-Schmidt model, we construct the likelihood ratio test statistic

LR = 2 (lnLu − lnLr) , (33)

where the unrestricted log likelihood lnLu is given by (25) and the restricted
log likelihood lnLr is given by (32). Under the null hypothesis, the test statistic
of (33) has a χ2-distribution of 2 degrees of freedom. Based on the estimation
results in Table 1, LR = 184.88. Therefore, the null hypothesis is strongly
rejected. 19

To conclude, the self-interested model is decisively rejected against the simpli-
fied Fehr-Schmidt model, based on the Huck et al. (2001) experimental results.
Moreover, the estimates of both p and a are significantly different from zero.
According to Table 1, there is a representative group of followers (38.6%)
with non-standard preferences, and the estimated disadvantageous inequality
aversion parameter is a high value of 5.231.

19We obtain the same conclusion based on the asymptotically equivalent Wald
test. An advantage of using the likelihood ratio test is that the standard deviation
parameter σ under the null hypothesis can be estimated. According to Table 1, the
estimate of σ under the self-interested model (2.591) is much larger than that under
the simplified Fehr-Schmidt model (1.164).
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7 Conclusion

In the random-matching Stackelberg duopoly experiments in Huck et al. (2001),
the players do not behave as predicted by the conventional theory. Specifically,
the followers act less timidly than predicted and the leaders behave less ag-
gressively than predicted. This behavioral pattern raises the questions of why
the conventional theory fails, and how to provide a better explanation.

In the Stackelberg duopoly experiments (as well as many other game-theoretic
situations), testing the predictions of conventional theory is really testing the
joint hypothesis of strategic behavior and the self-interested model. In the cur-
rent case, the structure of the game is very simple (especially for the followers)
that it is reasonable to maintain the assumption that the players are intelli-
gent enough to understand the game and behave strategically. As a result, it
is natural to seek for explanations based on non-standard preferences.

While there are well-known models of social preferences in the literature (such
as Andreoni (1990) and the models cited above), there are also some critics
arguing against this approach, as they are worried about altering the unob-
servable utility function would allow one to explain any phenomenon. In his
book on behavioral economics, Camerer (2003, p. 101) defends the study of
social preferences convincingly: “The goal is not to explain every different
finding by adjusting the utility function just so; the goal is to find parsimo-
nious utility functions, supported by psychological intuition, that are general
enough to explain many phenomena in one fell swoop, and also make new
predictions.” See also footnote 10 of Bolton and Ockenfels (2000).

In this paper, we follow this idea and develop a parsimonious model of social
preferences, which nests the standard preferences as a special case, to ex-
plain experimental Stackelberg duopoly. We simplify the well-received model
of Fehr and Schmidt (1999) in two directions–there is only one (representa-
tive) group of non-standard players and there is no advantageous inequality
aversion. With these simplifications, we are able to obtain sharper predictions
about the behavior of the leaders and followers, and to explain the major
features of Huck et al. (2001) better than conventional theory.

Another contribution of this paper is that the derivation of the best response
functions of different types of Stackelberg followers leads naturally to a max-
imum likelihood framework to examine the implications of our parsimonious
model. We then perform more structural estimations of this model with the
Stackelberg duopoly experimental data in Huck et al. (2001). 20 These formal

20 Cox et al. (2005) also perform structural estimations with this data set, but
their specification not only allows for inequality aversion, but also a concern for the
opponent’s intentions (Rabin, 1993).
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statistical analyses reveal that the implications of the simplified Fehr-Schmidt
model are consistent with the data, and that while the behavior of the majority
of the players is consistent with conventional theory, a significant proportion
(close to 40%) of the players are averse to disadvantageous inequality.

8 Appendix 21

Derivation of the best response function of type N followers. As the
utility function of a type N player is different for qF < qL and qF ≥ qL, we
analyze these two cases separately (for each of the three regions). Note that
when qF < qL (and therefore zF < zL), we have

UF = zF − αF (zL − zF ) = (h− qL − qF ) [(1 + αF ) qF − αF qL] (A1)

and
UL = zL = (h− qL − qF ) qL. (A2)

On the other hand, when qF ≥ qL, we have
UF = zF = (h− qL − qF ) qF (A3)

and

UL = zL − αL (zF − zL) = (h− qL − qF ) [(1 + αL) qL − αLqF ] . (A4)

First, consider Region A when the leader’s output qL lies in
h
q, h

3

i
. Using (A1),

we show that for any qL in this interval, UF is increasing in qF for qF ∈ [0, qL].
Using (A3), we show that UF is first increasing in qF for qF ∈

h
qL,

h
2
− qL

2

i
and

then decreasing in qF for qF ∈
h
h
2
− qL

2
, q
i
. Thus, the best response of a type

N follower to qL ∈
h
q, h

3

i
is given by (11a).

Second, consider Region C. Using (A1), we show that for any qL in [bq, q], UF
is first increasing in qF for qF ∈

h
q, h

2
− qL

2(1+a)

i
and then decreasing in qF for

qF ∈
h
h
2
− qL

2(1+a)
, qL

i
. Using (A3), we show that UF is decreasing in qF for

qF ∈ [qL, bq]. Thus, the best response of a type N follower to qL ∈ [bq, q] is
given by (11c). Note that bq in (12) is given by the intersection of (11c) and
the 45-degree line (qF = qL); see Figure 1 also.

Third, consider Region B. Using (A1), we show that for any qL in
h
h
3
, bqi, UF is

increasing in qF for qF ∈
h
q, qL

i
. Using (A3), we show that UF is decreasing in

21 In the following analysis we make use of well-known properties of quadratic func-
tions.
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qF for qF ∈ [qL, q]. Thus, the best response of a type N follower to qL ∈
h
h
3
, bqi

is given by (11b).

Proof of Lemma 1. It is easy to see that the quadratic function WA
L (qL)

in (13a) has a negative second derivative. Define qAL , which is not necessarily
restricted to Region A, as the value of qL such that the first derivative of
WA
L (qL) is zero. Simple algebra show that

qAL =
(1 + 2αL)

(2 + 3αL)
h. (A5)

As a result, we have

qAL −
h

3
=
(1 + 3αL)

3 (2 + 3αL)
h > 0. (A5a)

Since d2WA
L (qL)

dq2
L

< 0 and qAL > h
3
, the function WA

L (qL) must be monotonic

increasing in Region A (from q to h
3
). This proves Lemma 1.

Proof of Proposition 2. Define qCL , which is not necessarily restricted to
Region C, as the value of qL such that the first derivative of WC

L (qL) in (13c)
is zero. It can be shown that

qCL =
1

2
h
2− E

³
1

1+αF

´ih. (A6)

A necessary condition for the leader to choose the profit-maximizing Stackel-
berg leader quantity (h

2
) is that qCL ≥ h

2
. However, when p is strictly positive,

it can be shown that

h

2
− qCL =

h

2
− 1

2
h
2−

³
1+a−ap
1+a

´ih = Ã
ap

1 + a+ ap

!
h

2
> 0. (A6a)

Since qCL <
h
2
, we conclude that qL = h

2
must be dominated by some other

values of qL in Region C, regardless of whether qCL is in Region C or not. This
proves Proposition 2.

Proof of Proposition 3. A necessary condition for qL = h
3
(Cournot quan-

tity) to be chosen is that WB
L (qL) in (13b) is downward sloping in Region B.

Define qBL , which is not necessarily restricted to Region B, as the value of qL
such that the first derivative of WB

L (qL) is zero. It is easy to show that

qBL =
(1 + p)

2 (1 + 3p)
h. (A7)
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Therefore,
h

3
− qBL =

(3p− 1)
6 (1 + 3p)

h. (A7a)

Since WB
L (qL) is downward-sloping in Region B if and only if q

B
L is less than

or equal to h
3
, it is easy to conclude from (A7a) that this is satisfied when

p ≥ 1
3
. This proves Proposition 3(a).

When (14) is satisfied, Lemma 1 and Proposition 3(a) imply that qL = h
3
is

not dominated by any other choices in Regions A and B. Using either (13a)
or (13b), it can be shown that the leader’s utility level at qL = h

3
is

WA
L

Ã
h

3

!
=WB

L

Ã
h

3

!
=
1

9
h2. (A8)

The leader would choose the Cournot quantity (h
3
) when this choice is not

dominated by any other choice in Region C. If qCL ≤ bq (and thus WC
L (qL) is

downward sloping in Region C), this is automatically satisfied. 22 If qCL is in
Region C, then the leader’s maximum utility level in this interval is given by

WC
L

³
qCL
´
=

1

8
h
2−E

³
1

1+αF

´ih2. (A9)

Thus, it is necessary and sufficient for qL = h
3
to be chosen when the value of

(A8) is higher than or equal to that of (A9). Simple algebra shows that this
is equivalent to (15). This proves Proposition 3(b).
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Figure 2: Exploiting or Not Exploiting the First-Mover Advantage 
 
 
 

 Simplified 
Fehr-Schmidt Model 

Model with Aversion to 
Advantageous Inequality

Self-Interested 
Model 

p  0.386 
(0.0427) 

0.388 
(0.0427) - 

a  5.231 
(1.323) 

5.231 
(1.316) - 

b  - 0.156 
(0.114) - 

σ  1.164 
(0.0619) 

1.158 
(0.0617) 

2.591 
(0.124) 

ln L -429.14 -428.52 -521.58 
 

Note: For each coefficient, the number not in parentheses is the maximum likelihood 
estimate and the number in parentheses is the standard error. The estimation is based on 
220 trials of the random-matching Stackelberg experiments in Huck et al. (2001); see 
footnote 17 also. 
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