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1 Introduction

Economists have used the Battle of the Sexes game, which captures the pres-
ence of both conflict and coordination problems in an interesting way, to study
a wide range of issues. Selected examples include entry into a market of nat-
ural monopoly (Dixit and Shapiro, 1986) and network externality (Besen and
Farrell, 1994). A modified version of this game has also been used to study
the predictive power of forward induction (Cooper et al., 1993; Muller and
Sadanand, 2003).

Table 1 illustrates a popular version of the Battle of the Sexes game. In this
version of the game (with the standard assumption of h > l > 0), a couple
wants to spend an evening together, but the wife (player 1) prefers to attend
a ballet performance, while the husband (player 2) prefers to attend a football
match. If they both go to see the ballet performance, the wife gets a payoff of
h, and the husband gets l. If they both go to the football match, the husband
gets h, and the wife gets l. If they choose different activities, each gets a
(normalized) payoff of 0. There are both coordination and conflict elements in
this game (see, for example, Friedman, 1994). While both players want to go
out together, the conflict element is present because their preferred activities
differ, and the coordination element is present because they may end up going
to different events if communication between them is limited.

In an early discussion of this game, Luce and Raiffa (1957, p. 94) point out that
if the game is played repeatedly, then even when no preplay communication
is permitted, players can “signal to each other via their choice patterns on
previous plays. Introspectively, we would suspect that, after some preliminary
jockeying, the players would settle on a pattern of alternation between [the
two efficient outcomes].” In this paper, we study how turn taking can improve
the welfare of players in the repeated Battle of the Sexes game by mitigating
conflict and coordination problems in the absence of preplay communication.
We consider a strategy that we refer to as “turn taking with independent
randomizations” (TTIR), in which players randomize independently in the
initial periods of the game to determine endogenously when they will embark
on the turn-taking path (the coordination problem) as well as who will begin
with the good turn (the conflict problem). The TTIR strategy is modified from
Crawford and Haller (1990), who consider the use of precedents as focal points
in a pure coordination game. By effectively reducing conflict of interest and by
eventually solving the coordination problem in the Battle of the Sexes game,
turn taking allows players to engage in intertemporal sharing of the gain from
cooperation. Using this insight, we decompose the benefit associated with the
turn-taking equilibrium into conflict-mitigating and coordination-enhancing
components.
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The turn-taking equilibrium we emphasize in this paper is one in which alter-
nation occurs most frequently (i.e., in the turn-taking phase of the equilibrium
path, a player takes the good turn in one period, the bad turn in the next,
and so on), and we refer to this equilibrium as the “TTIR equilibrium.” 1 We
believe this type of “single-period alternation” is what Luce and Raiffa (1957)
refer to in the above quotation and what most people think is meant by turn
taking. According to the Folk Theorem of repeated games, there are many
possible subgame-perfect equilibria for this game, and the TTIR equilibrium
is just one of them. We show that, among different subgame-perfect equilib-
ria with “multiple-period alternation” (i.e., in the turn-taking phase of the
equilibrium path, a player takes the good turn in m consecutive periods, the
bad turn in the next m consecutive periods, and so on), the TTIR equilibrium
(with m = 1) gives the players the highest payoffs. This result provides theo-
retical justification for the observation that single-period alternation seems to
possess some focal-point features. 2

The key idea unifying our analysis is as follows. For the one-shot version of
the Battle of the Sexes game, define θ = h

l
as the degree of conflict of the

game. As several authors have argued, in the absence of communication, the
logical prediction of this game is the symmetric mixed-strategy equilibrium
(see Dixit and Shapiro, 1986, Farrell, 1987; also see Cooper et al., 1989). At
the mixed-strategy equilibrium, it can be shown that each of the two players
chooses his preferred activity with a probability that depends on θ only (i.e., it
depends only on the ratio of h and l but not on their absolute values). It is clear
that θ > 1, and thus, each player always chooses his preferred activity with
a probability higher than 0.5 at the mixed-strategy equilibrium; see Section
2 and Sub-section 4.1 for details. 3 In this game, a lower θ means that the
surplus of the game (obtained when the players reach the efficient, instead of
the inefficient, outcomes) is more evenly distributed, and thus the degree of
conflict is lower. When the degree of conflict (θ) decreases, the stake in not
reaching one’s preferred outcome becomes relatively small. As a result, each
player chooses his preferred activity with a lower probability, which is closer to
0.5, and his payoff at the mixed-strategy equilibrium increases. To summarize,
the increase in equilibrium payoff for a one-shot Battle of the Sexes game with

1 Along the TTIR equilibrium path, there is a turn-taking phase after the players
reach one of the efficient outcomes. Prior to that, there is a randomization phase.
More detailed analysis is given in Section 3.
2 Whether the single-period turn-taking pattern is observed, of course, can only be
confirmed by evidence in the laboratory or in the field. Interestingly, in a study that
involves different versions of the game of chicken (which is similar, but not identical,
to the Battle of the Sexes game), Bornstein et al. (1997) observe that a significant
percentage of subjects use the single-period alternation strategy.
3 The probability of 0.5 is a useful benchmark for comparing players’ behavior
because it maximizes the likelihood that the players will reach one of the two efficient
outcomes in the Battle of the Sexes game.
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a lower degree of conflict can be described as conflict mitigating.

The above idea applies to one-shot Battle of the Sexes games with different
degrees of conflict. We show that this idea can be generalized to a Battle of
the Sexes game with the same parameters h and l (and thus the same θ), if
repeated play is possible. Specifically, we show that the equilibrium “degree
of intertemporal conflict” (in a sense to be made precise later) is lower than
the exogenous degree of conflict in the stage game and that the discounted-
average payoff of each player at the TTIR equilibrium is higher than his payoff
at the mixed-strategy equilibrium of the stage game. By allowing the players
to engage in intertemporal sharing of the gain from cooperation, turn taking
reduces the distributional conflict and induces each player to behave less ag-
gressively (by choosing his preferred activity with a probability closer to 0.5
at the randomization phase of the TTIR equilibrium). As a result, players
are more likely to reach the efficient turn-taking path in earlier periods of the
game, and each player’s equilibrium payoff increases. The same intuition also
applies when we show that the TTIR equilibrium (with single-period alter-
nation) offers players the highest payoff among all subgame-perfect equilibria
with multiple-period alternation. More frequent alternation reduces distrib-
utional conflict and induces players to behave less aggressively. Thus, each
player’s equilibrium payoff is the highest under single-period alternation.

Our analysis suggests that for any m-period TTIR equilibrium, there is a
naturally defined equilibrium measure of the degree of intertemporal conflict
that provides an intuitive way to understand the sources of welfare gain from
turn taking in the repeated Battle of the Sexes game. We find that when this
equilibrium measure is higher, the players behave more aggressively, and thus
the welfare gain from turn taking is smaller. To our knowledge, the question
of how the degree of conflict in the stage game or the equilibrium degree
of intertemporal conflict in the repeated game affects players’ behavior and
welfare, has not been addressed in the literature.

This paper is organized as follows. Section 2 introduces the Battle of the Sexes
game with symmetric players, and summarizes some well-known results when
players interact once. Section 3 obtains the TTIR equilibrium of the repeated
Battle of the Sexes game. Section 4 discusses the underlying reasons behind
the benefit to players when they use the TTIR strategy, and proposes a way
to decompose this benefit into conflict-mitigating and coordination-enhancing
components. Section 5 considers the subgame-perfect equilibria with multiple-
period alternation and shows that each player’s equilibrium payoff decreases
when turn taking occurs less frequently. Section 6 provides concluding remarks.
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2 One-shot interaction in the Battle of the Sexes game

We consider the Battle of the Sexes game between two symmetric players
(players 1 and 2) with the following payoff structure:

U1 (T, S) = U2 (S, T ) = h > U1 (S, T ) = U2 (T, S) = l > Ui (T, T ) = Ui (S, S) = 0,
(1)

where T (which stands for Tough) and S (which stands for Soft) are the two
possible actions for player i (i = 1, 2), and Ui (x1, x2) is the payoff of player
i when player 1 chooses action x1 (T or S) and player 2 chooses action x2.
This game is represented in the left-hand panel of Table 2. To compare this
specification of the Battle of the Sexes game with the one illustrated in Table 1,
T represents choosing one’s preferred activity (ballet for player 1 and football
match for player 2), and S represents choosing the other player’s preferred
activity. 4

For analysis in later sections, we find it helpful to introduce an alternative
specification of the Battle of the Sexes game by defining the following two
parameters:

π =
h+ l

2
, (2)

and

θ =
h

l
. (3)

Parameter π, which is positive, can be interpreted as one half of the total
surplus if either asymmetric efficient outcome (T, S) or (S, T ), rather than
(T, T ) or (S, S), is reached. 5 We shall hereafter refer to π as the surplus
parameter, as this is the maximum attainable (expected) surplus for a player
in any symmetric solution of the Battle of the Sexes game. On the other
hand, parameter θ is related to how the total surplus in an efficient outcome
is distributed and can be interpreted as the degree of conflict of the game. It
is clear that

θ > 1. (4)

A higher θ in this range means that the surplus is more unevenly distributed,
and thus the degree of conflict is higher.

4 Note that according to this definition, two players choosing the same action
(Tough, for example) in the left-hand panel of Table 2 means that they attend
different events in Table 1. Cooper et al. (1989) also use the convention of denoting
a player’s preferred activity (which is different for the two players in the Battle of
the Sexes game) as a particular action (action 2 in their Figure 1).
5 One way to see this interpretation of parameter π is that if correlated strategy is
allowed, then both players may achieve π in this game.
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It is easy to see from (2) and (3) that

h =
2θπ

1 + θ
, (5)

and

l =
2π

1 + θ
. (6)

Using the specification based on the surplus and conflict parameters, the game
in (1) can be represented in the right-hand panel of Table 2.

Consider the game described above when the players interact once and choose
their actions independently in the absence of preplay communication. It is
easy to see that there are two (asymmetric) pure-strategy Nash equilibria:
(T, S) and (S, T ). There is an obvious source of conflict for the players over
these two equilibria, as each player prefers the equilibrium in which he chooses
Tough with the other player choosing Soft. There is also a (symmetric) mixed-
strategy equilibrium. At this equilibrium, it can be shown that each player
chooses Tough with probability q∗ ∈ (0, 1) to satisfy

q∗(0) + (1− q∗)(h) = q∗(l) + (1− q∗)(0).

Equivalently, q∗ satisfies

q∗

1− q∗ =
h− 0
l − 0 = θ. (7)

As a result, a player’s payoff at the mixed-strategy equilibrium is given by

U∗ = q∗(1− q∗)(h+ l) = hl

h+ l
=

2θπ

(1 + θ)2
. (8)

One advantage of the specification based on π and θ is that while a player’s
equilibrium payoff (U∗) depends on both parameters, his behavior (q∗) de-
pends only on the conflict parameter (but not the surplus parameter). This
specification is emphasized in the analysis in Section 4. On the other hand,
the specification based on h and l is more convenient for some subsequent
analyses. We use both specifications in this paper.

3 The TTIR equilibrium in the repeated Battle of the Sexes game

We now analyze the Battle of the Sexes game when two symmetric players
interact repeatedly. We model the environment in which the players interact
repeatedly as an infinite-horizon repeated game with discounting.
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Each of the two players makes a decision, simultaneously and independently,
about whether to choose Tough or Soft (or to choose randomly between the
two actions) in every period of the game. When making a new decision, say at
period n, player i (i = 1, 2) maximizes the discounted average of the stream
of his current and future stage-game payoffs (see, for example, Fudenberg and
Maskin, 1986), which is given by

(1− δ)
∞X
r=n

δr−nUi (x1r, x2r) ,

where δ ∈ (0, 1) is the common discount factor, xir (xir = T or S) is the choice
of player i at period r, and Ui (x1r, x2r) is the stage-game payoff of player i
according to (1). To capture the environment in Luce and Raiffa (1957, p. 94),
we assume that there is no communication between players (such as nonbind-
ing preplay communication in Farrell, 1987) and that there is no commonly
observed variable on which players may condition their strategies and thereby
correlate them. Crawford and Haller (1990) also make this assumption in an-
alyzing a pure coordination game.

Analogous to considering the symmetric mixed-strategy equilibrium in the
one-shot Battle of the Sexes game (in Section 2), we consider a symmetric
subgame-perfect equilibrium of the repeated game in which players use the
TTIR strategy. We refer to this equilibrium as the TTIR equilibrium.

The TTIR strategy specifies the following: (a) In the beginning period, the
players independently randomize between Tough and Soft. Denote the proba-
bility of choosing Tough as p, where p ∈ (0, 1). 6 (b) As long as the randomiza-
tion yields the symmetric outcome of either (T, T ) or (S, S), the randomization
phase will continue. (c) Whenever randomization “succeeds” in getting players
to the asymmetric outcome of either (T, S) or (S, T ), the game will switch to
the turn-taking phase in which each player chooses the action his opponent
took in the previous period. If no player defects from this strategy, the turn-
taking phase will continue. (d) Any defection during the turn-taking phase
will trigger a switch to the punishment phase, in which each player uses the
equilibrium mixed strategy of the stage game (i.e., each player chooses Tough
with probability q∗ given by (7)) in each period. 7

We now examine whether the above TTIR strategy constitutes a subgame-

6 More generally, one can define pi (i = 1, 2) as the probability that player i chooses
Tough in the randomization phase. In the symmetric subgame-perfect equilibrium,
the equilibrium values of p1 and p2 are equal. To avoid heavy use of notations, we
specify from the beginning that both players use the same strategy. There is no loss
of generality since we consider only symmetric equilibrium.
7 In Section 6, we consider other punishment strategies. We show that our results
continue to hold under these strategies.
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perfect equilibrium. Define WH as the player’s discounted-average payoff at a
period in which he chooses Tough and the other player chooses Soft, with the
expectation that players will choose the equilibrium TTIR strategy forever.
Similarly, define WL as the player’s discounted-average payoff at a period in
which he chooses Soft and the other player chooses Tough, with the expecta-
tion that players will choose the equilibrium TTIR strategy forever. Finally,
define W ∗ as the value of the game, which is a player’s discounted-average
payoff at the initial period or any period in the randomization phase (such
that both players’ actions were the same in the previous period), with the
expectation that players will choose the equilibrium TTIR strategy forever.

It is straightforward to show that for the Battle of the Sexes game the value
functions at the turn-taking phase are given by

WH = (1− δ)h+ δWL =
h+ δl

1 + δ
=

2 (δ + θ) π

(1 + δ) (1 + θ)
(9)

and

WL = (1− δ) l + δWH =
l + δh

1 + δ
=

2 (1 + δθ)π

(1 + δ) (1 + θ)
. (10)

To ensure that (9) and (10) are well defined, we need to verify that players will
not deviate from the equilibrium strategy. Because of the stationary structure
of the infinite-horizon repeated game, it is necessary to check only two no-
deviation conditions at the turn-taking phase, one at the player’s good turn
when he is supposed to play Tough, and the other at the player’s bad turn
when he is supposed to play Soft. The no-deviation condition at a player’s
good turn (when the actions of the player and his opponent were Tough and
Soft, respectively, in the previous period) is satisfied, because 8

WH − δU∗ = (1− δ) (h− 0) + δ
³
WL − U∗

´
> 0. (11)

Similarly, the no-deviation condition at a player’s bad turn is satisfied, because

WL − δU∗ = (1− δ) (l − 0) + δ
³
WH − U∗

´
> 0. (12)

Now, examine the beginning of the game (or any period in the randomization
phase). If both players use the equilibrium strategy in every period, it is easy
to see that the game will remain in the randomization phase in the next period
if and only if both players happen to choose the same action in the current
period. As a result, the payoff matrix of the repeated game (when viewed at
the beginning period) is given by Table 3.

8 From (8), it is easy to show that U∗ < l < h. Since WL is a weighted average of
h and l, it is obvious that WL > U∗. Thus, (11) holds. Similarly, (12) holds because
WH is a weighted average of h and l.
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For subsequent analysis, it is helpful to define the following function:

W (p) =
p (1− p)

³
WH +WL

´
1− δ

h
p2 + (1− p)2

i =
2p (1− p) π

1− δ
h
p2 + (1− p)2

i . (13)

If both players choose Tough with probability p in the randomization phase,
then this phase will continue with probability p2+(1− p)2 in the next period.
Therefore, the function W (p) represents a player’s discounted-average payoff
at the randomization phase when both players choose Tough with probability
p.

Denote the equilibrium probability of choosing Tough in the randomization
phase as p∗. We hereafter refer to p∗ as the equilibrium randomization proba-
bility. When both players use the equilibrium mixed strategy in the random-
ization phase, it can be deduced from Table 3 that the value of the game W ∗

and the equilibrium randomization probability p∗ are jointly determined by

W ∗ = p∗ (δW ∗) + (1− p∗)
³
WH

´
= p∗

³
WL

´
+ (1− p∗) (δW ∗) . (14)

Note thatW ∗, given by (14) or (A2) in the Appendix, is related to the function
W (p) in (13) according to

W ∗ = W (p∗) .

In the TTIR equilibrium, a player chooses p∗ to make the other player indif-
ferent between playing Tough and Soft. In the Appendix, it is shown that (14)
leads to 9

p∗ =
WH − δW ∗

(WH − δW ∗) + (WL − δW ∗)
=

2(δ+θ)π
(1+δ)(1+θ)

− δ
½

2p∗(1−p∗)π
1−δ[(p∗)2+(1−p∗)2]

¾
2π − 2δ

½
2p∗(1−p∗)π

1−δ[(p∗)2+(1−p∗)2]

¾ . (15)

Equation (15) can be interpreted as follows. A simple manipulation of the
second equality of (14) shows that the equilibrium randomization probability
p∗ in the current period is given by the middle term of (15), which involves
W ∗, since the game may remain in the randomization phase in the next pe-
riod. According to (A2) in the Appendix, a player’s continuation payoff in
the randomization phase, which is also equal to W ∗ because of the stationary
structure of the game, depends on (future) p∗. Thus, one can think of p∗ on the
left-hand side of (15) as the probability that both players choose Tough in the
current period (at the randomization phase), and p∗ on the right-hand side
as the probability that both players choose Tough in the future if the game

9 While we can simplify the right-hand term of (15), we choose to use this form so
that the relationship of this term with WH , WL, and W ∗ can be seen more clearly.
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remains in the randomization phase. The equilibrium condition (15)–which
says that p∗ has to satisfy a fixed point requirement–can be regarded as a
consistency condition between current and future randomization probabilities
of this infinitely repeated game with discounting.

In summary, for the repeated Battle of the Sexes game, a TTIR equilibrium
exists if there exists a p∗ ∈ (0, 1) that satisfies the equilibrium randomization
condition (15). Moreover, the TTIR equilibrium is unique if there exists only
one p∗ ∈ (0, 1) that satisfies this condition.

In the Appendix, we show that the TTIR equilibrium exists and is unique
for the repeated Battle of the Sexes game. The result is summarized in the
following Proposition.

Proposition 1 For the infinitely-repeated Battle of the Sexes game with dis-
counting, there exists a value of p∗ ∈ (0, 1) such that the strategy profile in
which both players adopt TTIR constitutes a subgame-perfect equilibrium for
all discount factors δ ∈ (0, 1). Moreover, this equilibrium value is unique. The
unique equilibrium randomization probability satisfies

0.5 < p∗ < 1 (16)

and is given by

p∗ =

q
(1 + 2δ + θ)2 + 4δ (θ − 1) (δ + θ)− (1 + 2δ + θ)

2δ (θ − 1) . (17)

4 Understanding the welfare gain of turn taking in the Battle of
the Sexes game

In the previous section we discuss how (eventual) turn taking can be supported
by TTIR as a subgame-perfect equilibrium for the repeated Battle of the Sexes
game. In this section we discuss complementary questions. For this game, what
is the benefit of repeated interaction when players use the TTIR strategy?
What are the underlying reasons for this welfare gain?

It turns out that an analysis of the one-shot Battle of the Sexes game with
different degrees of conflict provides insights into the benefit of turn taking.
Thus, we first focus on the one-shot Battle of the Sexes game in Sub-section
4.1. We then return to the repeated game and examine players’ equilibrium
behavior and welfare, respectively, in Sub-sections 4.2 and 4.3. The magnitude
of the welfare gain will be discussed in Sub-section 4.4.
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4.1 One-shot Battle of the Sexes games with different degrees of conflict

In this sub-section, we consider one-shot Battle of the Sexes games with the
same surplus parameter but different conflict parameters. We examine how
a change in the conflict parameter affects players’ behavior and welfare. To
make his opponent willing to randomize in the one-shot Battle of the Sexes
game, a player chooses Tough with probability q∗ to satisfy (7). It is clear from
(7) that q∗ depends only on the degree of conflict (θ) of the game.

First, we observe from (4) and (7) that

0.5 < q∗ < 1. (18)

Since θ > 1, if a player chooses, say, q∗ = 0.5, then the other player will strictly
prefer playing Tough and will not be willing to randomize. In equilibrium, each
player chooses q∗ > 0.5 to ensure that the other player is willing to randomize
between Tough and Soft.

Second, it can be shown from (7) that

dq∗

dθ
> 0. (19)

When the degree of conflict increases, the stake in not reaching one’s preferred
outcome is relatively high. As a result, each player has to choose a higher value
of q∗ to ensure that the other player is willing to randomize.

To see how players’ behavior affects their payoffs in the one-shot Battle of the
Sexes game, we define

U (q) = q (1− q) (h+ l) = 2q (1− q)π. (20)

When both players choose Tough with probability q, each player’s payoff is
given by U (q). It is easy to see from (20) that U (q) is a quadratic function of
q with the maximum at q = 0.5 and decreasing in either direction away from
0.5. That is, the slope function U 0 (q) is positive in q ∈ (0, 0.5) and negative
in q ∈ (0.5, 1).

Third, U∗ in (8) is related to U (q) according to

U∗ = U (q∗) .

Combining the above results, we obtain

dU∗

dθ
= U 0 (q∗)

dq∗

dθ
< 0. (21)
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The intuition of (21) is as follows. When the degree of conflict (θ) of the
Battle of the Sexes game decreases, q∗ decreases in the range (0.5, 1) and
becomes closer to (but is still higher than) 0.5, leading to a higher probability,
2q∗ (1− q∗), of getting to the efficient outcome of either (T, S) or (S, T ). This
change in players’ behavior (q∗) leads to an increase in each player’s payoff
(U∗), because q∗ > 0.5 and U 0 (q∗) is negative.

We represent these results in Figure 1. The points are drawn for a given value
of π (π = 100). At a particular θ (say, θ = 4) of the Battle of the Sexes game,
point A represents (h, l) =

³
2θπ
1+θ
, 2π
1+θ

´
= (160, 40) and point B represents

(l, h) =
³
2π
1+θ
, 2θπ
1+θ

´
= (40, 160). They are the pure-strategy equilibria of the

one-shot Battle of the Sexes game. The various outcomes of this game are
represented by point O (the origin), point A, and point B. Moreover, players’
payoffs at the mixed-strategy equilibrium, (U∗, U∗) = (32, 32), are represented
by point C on the 45-degree line.

Consider another game with the same π, but θ0 = 1.5 < θ (i.e., a lower degree
of conflict). The various payoffs of this game are represented by points O, A0,
and B0, where A0 represents (120, 80) and B0 represents (80, 120). It is easy
to see that A0 and B0 lie on line segment AB (as π is unchanged), but the
length of A0B0 is shorter than that of AB. For this game, players’ payoffs at
the mixed-strategy equilibrium are given by (48, 48) and represented by point
C 0.

Two observations can be obtained from Figure 1. First, when θ decreases,
lines OA and OB are rotated toward the 45-degree line (to OA0 and OB0,
respectively), because of (3). Second, when θ decreases, the player’s payoff at
the mixed-strategy equilibrium increases from OC to OC 0, according to (21).

4.2 Randomization probability at the turn-taking equilibrium

In the one-shot Battle of the Sexes game, we see that a change in the degree
of conflict (θ) affects players’ behavior (q∗) and thus their payoff (U∗). We
now examine how this insight can be extended to the TTIR equilibrium of
the repeated game. To examine the effect of repeated interaction in the Battle
of the Sexes game, we consider a change in the discount factor (from 0 to a
positive number less than 1) but no change in the conflict parameter.

In the following Proposition, we compare the probability of choosing Tough
(q∗) at the mixed-strategy equilibrium of the one-shot Battle of the Sexes
game with the probability of choosing Tough (p∗) at the TTIR equilibrium of
the repeated game. As mentioned before, a player chooses q∗ > 0.5 according
to (7) to make the other player willing to randomize in the one-shot game.

11



Similarly, to make the other player willing to randomize in the repeated game,
a player chooses p∗ > 0.5 to ensure that the second equality of (14) holds. 10

Proposition 2 In the TTIR equilibrium of the repeated Battle of the Sexes
game, the probability of choosing Tough (p∗) is always lower than the proba-
bility of choosing Tough ( q∗) at the mixed-strategy equilibrium of the one-shot
game. That is,

0.5 < p∗ < q∗ < 1. (22)

The proof of Proposition 2, which is guided by a comparison of the distribu-
tional conflict between players at the one-shot game versus that at the repeated
game, is given in the Appendix. Note that if players of the one-shot Battle of
the Sexes game reach an asymmetric efficient outcome, one player gets h, and
the other gets l. If they fail to achieve an efficient outcome, each player gets
zero. Therefore, the ratio of one player’s larger gain from cooperation (h− 0)
to the other player’s smaller gain from cooperation (l − 0) is given by the
degree of conflict in the stage game; that is, θ = h−0

l−0 . According to (7), the
odds in favor of Tough (i.e., the probability ratio q∗

1−q∗ ) at the mixed-strategy
equilibrium of the one-shot Battle of the Sexes game is given by θ. 11 On the
other hand, the odds in favor of Tough ( p∗

1−p∗ ) at the randomization phase of
the TTIR equilibrium are given by

p∗

1− p∗ =
WH − δW ∗

WL − δW ∗ ≡ θR, (23)

which is obtained from the second equality of (14). The middle term of (23)
has an interpretation similar to (7) of the one-shot game. When players use
the TTIR strategy in the repeated game, each player gets an expected payoff
of δW ∗ in the continuation subgame if they fail to reach an efficient outcome
in a particular period. Therefore, WH − δW ∗ is one player’s larger gain from
intertemporal cooperation (if they reach the turn-taking path) andWL−δW ∗

is the other player’s smaller gain. The middle term of (23), which is the ratio
of these two gains, can be interpreted as the degree of intertemporal conflict
at the TTIR equilibrium of the repeated Battle of the Sexes game. We denote
this term by θR, where R refers to the repeated game. Because the equilibrium

10 The intuition behind p∗ > 0.5 in (16) is similar to that behind q∗ > 0.5 in (18)
of the one-shot game. In the randomization phase, a player chooses p∗ to make the
other player indifferent between playing Tough and Soft. SinceWH > WL according
to (4), (9), and (10), if a player chooses, say, p∗ = 0.5, then the other player will
strictly prefer playing Tough and will not be willing to randomize. In equilibrium,
each player chooses p∗ > 0.5 to ensure that the other player is indifferent between
choosing Tough or Soft.
11 The odds of a particular event represent the probability of that event occurring,
as opposed to something else occurring. See, for example, Dixit and Skeath (2004,
p. 186, footnote 1) for more discussion.
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values of p∗ and W ∗ are determined simultaneously as functions of the primi-
tives of the repeated game, it is clear that θR is determined endogenously as
a function of these primitives. Since p∗ only depends on θ and δ according to
(17) and θR = p∗

1−p∗ , the equilibrium degree of intertemporal conflict depends
only on the exogenous degree of conflict in the stage game and on players’
impatience.

The intuition of Proposition 2 is that the equilibrium degree of intertemporal
conflict of the repeated Battle of the Sexes game is less than the original
degree of conflict of the one-shot game; that is, θR < θ. In the turn-taking
equilibrium, even though a player is currently taking the bad turn while the
other player takes the good one, the distributional conflict is less severe, since
the first player knows that with repeated play he will take the good turn in
the next period (and also periodically in other future periods). As a result of
the less severe distributional conflict, p∗ is closer to 0.5 when compared to q∗.

4.3 Conflict-mitigating and coordination-enhancing benefits of turn taking

According to Proposition 2, the probability of choosing Tough at the TTIR
equilibrium of the repeated Battle of the Sexes game is lower than the prob-
ability of choosing Tough at the mixed-strategy equilibrium of the one-shot
game, because the (equilibrium) degree of intertemporal conflict is reduced
by turn taking. In this sub-section, we examine how this change in behavior
affects players’ payoffs, and we provide a way to understand the welfare gain
of turn taking in the Battle of the Sexes game.

We now compare each player’s discounted-average payoff at the TTIR equi-
librium of the repeated game (W ∗) with his payoff at the mixed-strategy equi-
librium of the one-shot game (U∗). Using (13) and (20), the payoff differential
can be decomposed as the sum of the following two terms:

W ∗ − U∗ =W (p∗)− U (q∗) = [U (p∗)− U (q∗)] + [W (p∗)− U (p∗)] . (24)

The first component of the payoff differential can be understood as follows.
If players do not engage in turn taking and just randomize with probability
q∗ every period, each will get a discounted-average payoff equal to the mixed-
strategy equilibrium payoff U∗ = 2q∗ (1− q∗)π in the stage game, which can
be denoted as U (q∗). On the other hand, if they randomize with probability p∗

every period, each will get a discounted-average payoff U (p∗) = 2p∗ (1− p∗) π.

Since 0.5 < p∗ < q∗ < 1 and U 0 (q) < 0 for 0.5 < q < 1, we conclude that

U (p∗)− U (q∗) = 2 [p∗ (1− p∗)− q∗ (1− q∗)]π > 0. (25)
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The intuition of (25) is as follows. Recall that q∗ is determined by the degree
of conflict (θ) of the stage game according to (7), while p∗ is determined by
the equilibrium degree of intertemporal conflict (θR) in the repeated game
according to (23). We show in Proposition 2 that θR < θ, and thus, 0.5 <
p∗ < q∗ < 1. As a result, each player’s payoff when both randomize with p∗

each period is higher than the payoff each gets when both randomize with
q∗ each period. Because this increase in payoff is similar to that associated
with a decrease in the degree of conflict in the one-shot game (see Figure
1), we call this component of payoff increase associated with turn taking the
conflict-mitigating benefit.

Of course, in the TTIR equilibrium, players do not randomize with probability
p∗ every period. According to the TTIR strategy, players will switch from the
randomization phase to the turn-taking phase when randomization leads to the
asymmetric outcome of either (T, S) or (S, T ) in a particular period. Besides
the conflict-mitigating benefit in (25), turn taking also delivers another benefit
to players of the repeated Battle of the Sexes game. This benefit is given by
the second term in the right-hand side of (24). It is easy to see that

W (p∗) =
2p∗ (1− p∗) π

1− δ
h
(p∗)2 + (1− p∗)2

i > 2p∗ (1− p∗) π = U (p∗) . (26)

In the repeated Battle of the Sexes game, if each of the two players uses
the equilibrium TTIR strategy, then they will reach the efficient outcome
of either (T, S) or (S, T ) after some initial periods of “trial and error.” Not
surprisingly, a player’s payoff at the TTIR equilibrium,W ∗ = W (p∗), is higher
than U (p∗), his payoff when both players do not engage in turn taking and
simply randomize with probability p∗ each period. Since W (p∗) − U (p∗) is
related to the fact that the TTIR strategy allows players to reach the efficient
asymmetric outcomes even without preplay communication, we call it the
coordination-enhancing benefit.

We summarize the benefits of turn taking in the repeated Battle of the Sexes
game in the following Proposition.

Proposition 3. Compared with the payoff at the mixed-strategy equilibrium in
the one-shot Battle of the Sexes game, a player’s discounted-average payoff at
the TTIR equilibrium of the repeated game (with the same surplus and conflict
parameters) is higher. Moreover, this payoff differential can be decomposed
as the sum of the conflict-mitigating benefit and the coordination-enhancing
benefit, according to (24).

The benefit of the TTIR strategy for the repeated Battle of the Sexes game
can be illustrated graphically as follows. Figure 2 is drawn for a fixed value
of π = 100. For easy comparison with Figure 1, the payoff points A, B (and
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the origin) correspond to the game with θ = 4. As before, players’ payoffs
at the mixed-strategy equilibrium of the one-shot game are given by point C.
When repetition becomes relevant and δ increases from zero (to, say, 0.78125),
players’ equilibrium payoffs–when evaluated at any period during the turn-
taking phase–are represented by points Aδ and Bδ. Note that, similar to
Figure 1, lines OA and OB are rotated toward the 45-degree line to OAδ

and OBδ. Moreover, players’ equilibrium discounted-average payoffs (when
evaluated in the beginning of the repeated game), (W ∗,W ∗) = (80.84, 80.84),
are represented by point Cδ. According to Proposition 3, W ∗ > U∗, and the
payoff increase (W ∗ − U∗) associated with turn taking is represented by the
distance CCδ. Furthermore, this payoff increase can be decomposed as the sum
of CC 0 (the conflict-mitigating benefit) and C 0Cδ (the coordination-mitigating
benefit). 12

4.4 The magnitude of the welfare gain

We have obtained qualitative results pertaining to the welfare gain of turn
taking in Proposition 3, and we now examine the magnitude of the welfare
gain. For selected parameter values of θ and δ (at a given value of π = 100),
the equilibrium values of p∗ are given in Table 4, the equilibrium intertemporal
degrees of conflict (θR) are given in Table 5, and the corresponding values of
W ∗ are given in Table 6. Note that by fixing π = 100, the entry in Table 6
can be interpreted as the percentage of maximum surplus (π) obtained.

One way to observe the benefit of repetition with turn taking supported by
the TTIR strategy in Table 6 is to fix the value of θ (say, θ = 4 and thus
h = 4l) and compare a player’s payoff in the one-shot game (the entry in the
last row) with that in another row with δ > 0 (say, δ = 0.9). It is easy to
conclude that players’ welfare is higher in the repeated game.

Quantitatively, the effect of repetition on W ∗ can be quite substantial. Con-
sider, again, θ = 4. When players interact once (δ = 0), only 32% of a player’s
maximum surplus (π) is obtained at the mixed-strategy equilibrium. On the
other hand, by allowing repetition (δ > 0) only, the increase in players’ wel-
fare can be huge, especially when they are relatively patient. As an exam-
ple, when δ is 0.78125, the equilibrium degree of intertemporal conflict is
θR = p∗

1−p∗ = 1.5, which is smaller than the exogenous degree of conflict of the
stage game (θ = 4). In this case, a player’s discounted-average payoff in the
repeated game is 80.84, which is more than double his payoff (32.00) in the

12Note that by choosing δ = 25
32 = 0.78125, both C

0 in Figure 2 (corresponding to
p∗ = 0.6 in the repeated game when θ = 4) and C0 in Figure 1 (corresponding to
q∗ = 0.6 in the one-shot game when θ = 1.5) represent the point (48, 48).
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one-shot game. The increase in players’ welfare is even more dramatic when θ
is large, as can be observed in the last column of Table 6.

In Table 7, the welfare gain of turn taking is decomposed into conflict-mitigating
and coordination-enhancing components. We observe from Table 7 that turn
taking can lead to huge coordination-enhancing benefits, especially if the dis-
count factor is high. Moreover, the ratio of coordination-enhancing benefit
to conflict-mitigating benefit varies with δ and θ, with a lower proportion of
coordination-enhancing benefit occurring when the degree of conflict is higher
and players are relatively impatient.

5 Multiple-period alternation

In the TTIR equilibrium studied in earlier sections, alternation occurs every
period (in the turn-taking phase). We believe this pattern is what Luce and
Raiffa (1957) and most people have in mind about turn taking in the Battle of
the Sexes game. From the Folk Theorem of repeated games with discounting
(see, for example, Fudenberg and Maskin, 1986, 1991; Abreu, 1988), we know
that the TTIR equilibrium is just one of many possible subgame-perfect equi-
libria for this game. In this section, we provide some justification for the TTIR
equilibrium by showing that players’ welfare at the TTIR equilibrium (with
single-period alternation) is the highest among all symmetric subgame-perfect
equilibria with multiple-period alternation.

As in Section 3, there is no preplay communication between players, and we
consider a strategy that is similar to the TTIR strategy. In particular, there
is a randomization phase in the beginning. The only difference is in step (c)
of the TTIR strategy. For the multiple-period turn taking with independent
randomizations (hereafter multiple-period TTIR) strategy considered in this
section, we specify that, as long as the randomization yields the asymmetric
efficient outcome of either (T, S) or (S, T ), the player who takes the good turn
will continue to take the good turn for another m− 1 periods, where m is an
integer larger than or equal to 1. Afterwards, the other player takes the good
turn for m periods. And so on.

Since the analysis in this section is quite similar to that in Section 3, we keep
the presentation brief. Define WH

m as the player’s discounted-average payoff
at the first period in which he chooses Tough and the other player chooses
Soft, with the expectation that players will choose the equilibrium multiple-
period TTIR strategy in all future periods. Similarly, defineWL

m as the player’s
discounted-average payoff at the first period in which he chooses Soft and the
other player chooses Tough, with the expectation that players will choose the
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equilibrium strategy forever. 13 Finally, define W ∗
m as a player’s discounted-

average payoff at any period in the randomization phase, with the expectation
that players will choose the equilibrium strategy forever.

With the same punishment strategy as in Section 3, it can be shown that
the players will not deviate from the equilibrium strategy in the turn-taking
phase. Moreover, it is easy to see that

WH
m =

h+ δml

1 + δm
, (27)

and

WL
m =

l + δmh

1 + δm
. (28)

Denote the equilibrium probability of choosing Tough in the randomization
phase as p∗m. It can be shown that W

∗
m and p

∗
m are jointly determined by

W ∗
m = p

∗
m (δW

∗
m) + (1− p∗m)

³
WH
m

´
= p∗m

³
WL
m

´
+ (1− p∗m) (δW ∗

m) . (29)

In the Appendix, we prove the following Proposition.

Proposition 4. (a) For the repeated Battle of the Sexes game, there exists
a value of p∗m ∈ (0, 1) such that the strategy profile in which both players
adopt multiple-period TTIR constitutes a subgame-perfect equilibrium for all
discount factors δ ∈ (0, 1). Moreover, this equilibrium value is unique, and it
satisfies

0.5 < p∗m < 1. (30)

(b) p∗m is increasing in m. (c) W
∗
m is decreasing in m.

The intuition of Proposition 4 is as follows. We rearrange (29) to obtain

p∗m
1− p∗m

=
WH
m − δW ∗

m

WL
m − δW ∗

m

≡ θRm. (31)

The odds in favor of Tough ( p∗m
1−p∗m ) at the randomization phase are given by

the middle term in (31). Analogous to (7) and (23), we can interpret the
middle term of (31)–the ratio of the two players’ gains from intertemporal
cooperation–as the equilibrium degree of intertemporal conflict (θRm) of the
repeated Battle of the Sexes game when the players use the multiple-period
TTIR strategy. Note that analogous to the fact that θR in (23) depends only
on θ and δ, it can be shown that θRm depends only on θ, δ, and m. Comparing
(23) with (31), it is obvious that θRm = θR when m = 1.

13Note that the other 2m − 2 value functions at the turn-taking phase can be
similarly defined, but they are not essential for the subsequent analysis.
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The key point of Proposition 4 is that the equilibrium degree of intertemporal
conflict of the Battle of the Sexes game is different for turn taking of different
length of alternation. Proposition 4(b) establishes that the equilibrium degree
of intertemporal conflict is increasing in the length of alternation. When m
increases, turn taking becomes less frequent, and thus the importance of being
the first one to take the good turn increases. Therefore, an increase in the
length of alternation induces each player to behave more aggressively in the
randomization phase, and thus the equilibrium value of p∗m increases and is
further from 0.5. Furthermore, much as we do in earlier sections, we show in
Proposition 4(c) that players’ more aggressive behavior increases the length
of time it is expected to take to reach the turn-taking path, which reduces the
welfare of both players. As a result, W ∗

m is decreasing in m.

To summarize, a TTIR strategy with a different length of alternation can be
viewed as a different mechanism for the intertemporal sharing of gain from
cooperation in the repeated Battle of the Sexes game. The intuition of Propo-
sition 4 is that the equilibrium degree of intertemporal conflict (θRm) of such a
mechanism provides a parsimonious and intuitive way for understanding its ef-
ficacy in mitigating coordination and conflict problems. When an intertempo-
ral gain-sharing mechanism is associated with a higher degree of intertemporal
conflict, players behave more aggressively as a result of their efforts to capture
a larger share of the intertemporal welfare gain. Consequently, this mechanism
gives players a lower payoff compared to another mechanism associated with
a lower degree of intertemporal conflict.

This insight is related to, and extends, an important finding in Bhaskar (2000).
In the context of the repeated Battle of the Sexes game and the repeated
Hawk-and-Dove game, he compares the efficiency properties of two “conven-
tions,” where a convention is defined as “a rule which achieves asymmetric
coordination by conditioning upon history” (Bhaskar, 2000, p. 250). In that
paper, the players also use independent randomizations to resolve the coordi-
nation problem. A “bourgeois” convention specifies that after an asymmetric
outcome is reached as a result of randomization in some initial period, play-
ers will choose this particular outcome in all future periods. A convention is
“egalitarian” if players’ payoffs are equalized as much as possible. 14 The key
point of Bhaskar’s analysis is that different conventions give rise to different

14 The egalitarian convention works as follows (Bhaskar, 2000, pp. 256-257). Sup-
pose the realized outcome in some initial period is (T, S), and player 1’s current-
period payoff exceeds player 2’s. To implement the egalitarian convention, the play-
ers choose (S, T ) in succeeding periods until the discounted-average payoff of player
2 exceeds that of player 1. At this point the players switch to playing (T, S) until
player 1’s discounted-average payoff exceeds player 2’s, and so on. This method,
which is an application of the results in Sorin (1986) and Fudenberg and Maskin
(1991), is based on the idea of keeping track of players’ discounted-average payoffs
at each period.
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incentives for players’ behavior in the randomization phase. Under the bour-
geois convention, each player has a high stake in ensuring that coordination
will be achieved in his preferred asymmetric outcome, and this causes players
to place more weight on playing Tough in the randomization phase than they
do under the egalitarian convention. As a result, coordination is less likely
to be achieved in earlier periods under the bourgeois convention, and this
convention is relatively less efficient.

The results in Bhaskar (2000) are closely related to the insight of our Propo-
sition 4. Bhaskar’s finding can be framed as saying that because the bourgeois
convention involves a higher degree of intertemporal conflict than the egalitar-
ian convention, it causes players to behave more aggressively and hence leads
to lower welfare than the egalitarian convention. 15 Despite this similarity,
there are major differences between this paper and Bhaskar (2000). Motivated
by the observation that turn taking is often used as a mechanism of intertem-
poral sharing of gains from cooperation, we consider the TTIR strategy that
specifies periodic alternation between players once they embark on the turn-
taking path. The egalitarian convention considered by Bhaskar, on the other
hand, involves the use of more complex time-varying strategies which equal-
izes players’ payoffs (see footnote 14). Moreover, this paper demonstrates the
importance of the degree of conflict in the stage game and the equilibrium
degree of intertemporal conflict in the repeated game in understanding the
efficacy of different mechanisms in mitigating conflict and coordination prob-
lems. This insight, which to our knowledge has not been emphasized in the
literature, provides a unified way of understanding the superiority of the egal-
itarian convention relative to the bourgeois convention in Bhaskar (2000) and
the benefit from turn taking analyzed in this paper.

6 Conclusion

We conclude by discussing three issues: the possibility of alternative punish-
ment, the efficiency loss in the TTIR equilibrium, and directions for future
research.

In our specification of the TTIR strategy, we assume that defection during the
turn-taking phase will trigger the play of the static mixed-strategy equilibrium
forever. As we now demonstrate, our results regarding the equilibrium random-
ization probability (p∗) and the player’s equilibrium payoff (W ∗) continue to
hold whenever an alternative punishment strategy prevents players from devi-
ating from equilibrium behavior. For example, consider a new TTIR strategy

15Note that when m → ∞, the TTIR strategy with m-period alternation studied
in this section becomes the bourgeois convention in Bhaskar (2000).

19



with an alternative punishment strategy that replaces step (d) in Section 3
with the following: Any defection during the turn-taking phase will trigger a
switch back to the randomization phase, and this randomization phase will
continue until randomization succeeds in getting players to the asymmetric
outcome of either (T, S) or (S, T ) again. 16 Provided that the no-deviation
conditions during the turn-taking phase are satisfied, it is easy to see that the
analysis in the randomization phase is the same as in Section 3. In particular,
p∗ and W ∗, which are related by (14), are the same as before. From (A4) and
(A5) of the Appendix, we conclude that the two no-deviation conditions of the
TTIR strategy supported by this alternative punishment strategy are indeed
satisfied. That is,

WH − δW ∗ > 0, (11a)

and
WL − δW ∗ > 0. (12a)

Consequently, we obtain the same behavioral and welfare implications char-
acterized in our earlier discussion. 17

Our analysis shows how turn taking can mitigate conflict and coordination
problems in the repeated Battle of the Sexes game even in the absence of
communication and devices to correlate randomization. In this context, players
randomize independently in the initial periods to resolve the questions of how
they reach the turn taking path and who takes the good turn first. While we
find that there is a welfare gain associated with turn taking, we also discover
that the percentage of surplus attained is not close to the maximum of 100,
owing to the initial randomization, for some parameter combinations in Table
6. A natural direction for future research is to investigate, both qualitatively
and quantitatively, how other complementary mechanisms such as cheap talk
(see, for example, Farrell, 1987; Cooper et al., 1989; Farrell and Rabin, 1996)
can further improve the welfare gain.

In this paper, we focus on the Battle of the Sexes game, since this game has
been widely applied and since Luce and Raiffa (1957) refer to it in relation
to turn taking under repeated interaction. Another direction for research is
to understand the welfare gain of turn-taking behavior in other settings. For
example, turn taking is observed in many situations in which common-pool

16 Lau (2001) also uses this punishment strategy in a paper that provides a game-
theoretic explanation for staggered contracts.
17 Both this punishment strategy and the one discussed in Section 3 treat the two
players symmetrically, irrespective of who cheats. Another strategy is to punish the
player that deviates by restarting the turn-taking path at his bad turn with the other
player starting at his good turn. This punishment strategy does not treat players
symmetrically, but the punishment path is efficient. It can easily be shown that
the no-deviation conditions for this punishment strategy are satisfied (for example,
WL − δWL > 0).
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resources, such as fishing spots in Turkey (Berkes, 1992), are assigned. Ostrom
et al. (1994, pp. 58-61) suggest a “game of common-pool resource assignment”
to capture, in the simplest fashion, a situation in which two fishermen inde-
pendently decide to go to one of two fishing spots in their community. The
good spot has a value of h, and the bad spot has a value of l, where h > l > 0.
If the two choose different spots, each will obtain the respective value of the
spot. If they choose the same spot, they will split the value of the spot equally.

The assignment game described above, which also features interesting coor-
dination and conflict problems, differs from the Battle of the Sexes game.
For example, in one version of the one-shot assignment game where the good
fishing spot is “sufficiently more attractive” than the bad spot (i.e., h > 2l),
there is a unique pure-strategy equilibrium that involves both players going
to the good spot. In Lau and Mui (2005), we find that the TTIR equilibrium
of this version of the repeated assignment game can only be supported as a
subgame-perfect equilibrium if players are patient enough, unlike the repeated
Battle of the Sexes game in which the TTIR equilibrium can be supported as
a subgame-perfect equilibrium for any discount factor. It will be interesting
to study how turn taking can lead to conflict-mitigating and coordination-
enhancing benefits in the game of common-pool resource assignment, as well
as in other games.

7 Appendix

Proof of (15). From (9) and (10), it is straightforward to show that

WH +WL = h+ l = 2π. (A1)

Another way to represent (14) is

W ∗ = (p∗)2 (δW ∗) + p∗ (1− p∗)WH + p∗ (1− p∗)WL + (1− p∗)2 (δW ∗) .

After simplification, we obtain

W ∗ =
p∗ (1− p∗)

³
WH +WL

´
1− δ

h
(p∗)2 + (1− p∗)2

i . (A2)

It is easy to see that the second equality of (14) leads to the first equality of
(15). Substituting (9), (A1) and (A2) into the first equality of (15) leads to
the second equality of (15).
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Proof of Proposition 1. Based on (15) and (A2), we define the function
f (p) for 0 ≤ p ≤ 1 as

f (p) =
WH − δW (p)

[WH − δW (p)] + [WL − δW (p)]
, (A3)

where W (p) is defined in (13). 18 It is easy to see that p∗ in (15) is a fixed
point of function f (p).

Using (9), (10) and (13), it can be shown that for 0 ≤ p ≤ 1,
WH > W (p) > δW (p) , (A4)

and
WL = (1− δ) l + δWH > δW (p) . (A5)

We know from (9) and (10) that WH > WL. Combining it with (A3), (A4)
and (A5), we conclude that for all 0 ≤ p ≤ 1,

0.5 < f (p) < 1. (A6)

Thus, f (p) is a continuous mapping from the compact set [0, 1] to itself.
Applying the Brouwer’s Fixed Point Theorem, we know that this function has
a fixed point. That is, there exists a p ∈ [0, 1] such that f (p) = p. Moreover,
f (p) = p does not hold at p = 0 or p = 1, since f (0) 6= 0 and f (1) 6= 1
according to (A6). Combining the above results, we conclude that the solution
to (15) exists in the interval (0, 1). We denote the solution by p∗.

To show the uniqueness of p∗, we use (A3) and (13) to obtain

f 0 (p) =
δ
³
WH −WL

´
[WH +WL − 2δW (p)]2

2 (1− 2p) (1− δ) πn
1− δ

h
p2 + (1− p)2

io2 . (A7)

According to (A6), f (p) > 0.5 for p ∈ [0, 0.5]. Therefore, f (p) will not inter-
sect with the 45-degree line in this interval. On the other hand, f (p) decreases
when p increases from 0.5 to 1 according to (A7), and 0.5 < f (0.5) < 1 and
0.5 < f (1) < 1 according to (A6). Thus, f (p) must intersect exactly once
with the 45-degree line when p ∈ (0.5, 1). We conclude that p∗ ∈ (0, 1) is
unique and it satisfies (16).

Simplifying (15) leads to

δ (θ − 1) (p∗)2 + (1 + 2δ + θ) p∗ − (δ + θ) = 0. (A8)
18Note that we restrict 0 < p < 1 in the main text, since the turn-taking phase will
never be reached if both players choose p = 0 or p = 1 in the randomization phase.
We extend the domain of f (p) in (A3) to include p = 0 and p = 1 in order to apply
well-known mathematical results.
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Applying the quadratic formula, it is straightforward (but tedious) to show
that only one of the two roots to (A8) is between 0 and 1, and it is given by
(17).

Proof of Proposition 2. We know from (16) that p∗ > 0.5 and from (18)
that q∗ < 1. To show p∗ < q∗, we proceed in two steps. First, we show that

h+ l

1 + δ
> W ∗. (A9)

The proof is as follows. Because of δ < 1, (A1), (A2) and

(p∗)2 + (1− p∗)2 + 2p∗ (1− p∗) = 1,

we have

h+ l

1 + δ
−W ∗ >

h+ l

2
−W ∗ = π − 2p∗ (1− p∗)π

1− δ
h
(p∗)2 + (1− p∗)2

i

=
(1− δ)

h
(p∗)2 + (1− p∗)2

i
π

1− δ
h
(p∗)2 + (1− p∗)2

i > 0.

Second, we show that (A9) is equivalent to p∗ < q∗. This is because, using (7),
(9), (10) and (23), we have

p∗ < q∗

⇐⇒ p∗

1− p∗ <
q∗

1− q∗

⇐⇒ WH − δW ∗

WL − δW ∗ <
h

l

⇐⇒ h
³
WL − δW ∗´ > l ³WH − δW ∗´

⇐⇒ h

Ã
l + δh

1 + δ

!
− l

Ã
h+ δl

1 + δ

!
> (h− l) δW ∗

⇐⇒ δ
³
h2 − l2

´
> (h− l) δ (1 + δ)W ∗

⇐⇒ h+ l

1 + δ
> W ∗.

Combining the above results, we prove Proposition 2.

Proof of Proposition 4. From (27) to (29), it can be shown that

W ∗
m =

p∗m (1− p∗m)
³
WH
m +W

L
m

´
1− δ

h
(p∗m)

2 + (1− p∗m)2
i = 2p∗m (1− p∗m)π

1− δ
h
(p∗m)

2 + (1− p∗m)2
i . (A10)
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Combining (A10) and the second equality of (29), we obtain

p∗m =
WH
m − δW ∗

m

(WH
m − δW ∗

m) + (W
L
m − δW ∗

m)
=

WH
m − δ

½
2p∗m(1−p∗m)π

1−δ[(p∗m)2+(1−p∗m)2]

¾
WH
m +W

L
m − 2δ

½
2p∗m(1−p∗m)π

1−δ[(p∗m)2+(1−p∗m)2]

¾ .
(A11)

We define the function g (pm) for 0 ≤ pm ≤ 1 as

g (pm) =
WH
m − δWm (pm)

[WH
m − δWm (pm)] + [WL

m − δWm (pm)]
, (A12)

where

Wm (pm) =
2pm (1− pm) π

1− δ
h
(pm)

2 + (1− pm)2
i . (A13)

Note that p∗m in (A11) is a fixed point of function g (pm) in (A12).

It can be shown from (A13) that for 0 ≤ pm ≤ 1,

WH
m +W

L
m > 2δWm (pm) . (A14)

We know from (27) and (28) that WH
m > WL

m. Combining it with (A12) and
(A14), we know that for all 0 ≤ pm ≤ 1, 19

g (pm) > 0.5. (A15)

Next, we obtain

g0 (pm) =
δ
³
WH
m −WL

m

´
[WH

m +W
L
m − 2δWm (pm)]

2

2 (1− 2pm) (1− δ)πn
1− δ

h
(pm)

2 + (1− pm)2
io2 . (A16)

According to (A15), g (pm) > 0.5 for pm ∈ [0, 0.5]. Therefore, g (pm) will not
intersect with the 45-degree line in this interval. On the other hand, g (pm)
decreases when pm increases from 0.5 to 1 according to (A16), g (0.5) > 0.5

according to (A15), and 0.5 < g (1) = WH
m

WH
m+W

L
m
< 1. Thus, g (pm)must intersect

exactly once with the 45-degree line when pm ∈ (0.5, 1). We conclude that
p∗m ∈ (0, 1) exists, is unique and it satisfies (30). This proves part (a).

19Note that the proof of the existence and uniqueness of p∗m ∈ (0, 1) is similar,
but not identical, to that in Proposition 1. This is because for multiple-period
alternation, g (pm) may be greater than 1, sinceWL

m may be smaller than δWm (pm).
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To prove parts (b) and (c), we interpret m as a continuous variable and use
techniques in calculus. The second equality of (29) can be rewritten as

p∗m (m)
h
WL
m (m)− δW ∗

m (p
∗
m (m))

i
= [1− p∗m (m)]

h
WH
m (m)− δW ∗

m (p
∗
m (m))

i
,

where the dependence of WH
m on m, WL

m on m, p
∗
m on m, and W

∗
m on p

∗
m (m)

are explicitly stated. It is clear from (A10) that W ∗
m depends on m via p∗m

only.

Differentiating the above expression with respect to m, and simplifying, give

dp∗m
dm

=

dWH
m

dm
− p∗m

·
d(WH

m+W
L
m)

dm

¸
(WH

m +W
L
m − 2δW ∗

m) + δ (1− 2p∗m) dW
∗
m

dp∗m

. (A17)

The sign of various components of (A17) are obtained as follows. We know
from (27), (28), (30), (A13) and (A14) that

WH
m +W

L
m − 2δW ∗

m > 0, (A14a)

dWH
m

dm
=
− (h− l) δm ln δ
(1 + δm)2

> 0, (A18)

d
³
WH
m +W

L
m

´
dm

=
d (2π)

dm
= 0, (A19)

and
dW ∗

m

dp∗m
=

2 (1− δ) (1− 2p∗m)πn
1− δ

h
(p∗m)

2 + (1− p∗m)2
io2 < 0. (A20)

We conclude from (30), (A14a), (A18), (A19) and (A20) that

dp∗m
dm

> 0. (A21)

This proves part (b).

Since W ∗
m depends on m via p∗m only, we obtain

dW ∗
m

dm
=

Ã
dW ∗

m

dp∗m

!Ã
dp∗m
dm

!
< 0, (A22)

because of (A20) and (A21). This proves part (c).
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Table 1: A Battle of the Sexes Game 
 

1\2 Ballet Football

  Ballet ( ),h l  ( )0,0  

  Football ( )0,0  ( ),l h  

 
 

 
Table 2: Two Specifications of the Battle of the Sexes Game 

 
(a) The h and l Specification    (b) Theπ andθ Specification  

 

1\2 Tough Soft  1\2 Tough Soft 

 
Tough ( )0,0  ( ),h l  

 
Tough ( )0,0  2 2,

1 1
θπ π
θ θ

 
 + + 

 

 
Soft ( ),l h  ( )0,0  

 
Soft 

2 2,
1 1
π θπ
θ θ

 
 + + 

 ( )0,0  

 
 
 

Table 3: Payoff Matrix of the Repeated Battle of the Sexes Game 
 

1\2 Playing Tough at Period 0 Playing Soft at Period 0 

Playing Tough at Period 0 ( )*, *W Wδ δ  ( ),H LW W  

Playing Soft at Period 0 ( ),L HW W  ( )*, *W Wδ δ  

 
 
 

Table 4: Randomization Probability ( *p ) at the TTIR Equilibrium  1

 
θδ \  1.01 1.5 4 10 

0.5 0.5012 0.55 0.65 0.69 
0.78125 0.5009 0.534 0.60 0.63 

0.9 0.5007 0.529 0.58 0.61 
0.99 0.5006 0.525 0.57 0.60 

One-shot game 0.5025 0.60  0.80 0.91 
 

1  The entries in the first four rows, which represent *p  at the TTIR equilibrium of the 
repeated game, are calculated according to (17). For comparison, we also calculate  at the 
mixed-strategy equilibrium of the one-shot game, which depends on 

*q
θ  only, according to (7).  
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Table 5: Equilibrium Intertemporal Degree of Conflict ( Rθ ) 1  
 
 

θδ \  1.01 1.5 4 10 
0.5 1.0050 1.22 1.82 2.27 

0.78125 1.0034 1.15 1.50 1.73 
0.9 1.0029 1.12 1.41 1.59 
0.99 1.0025 1.11 1.35 1.50 

 
1  The entries, which represent Rθ  at the TTIR equilibrium of the repeated game, are 
calculated according to (23).  

 
 
 

Table 6: Each Player’s Payoff (W ) at the TTIR Equilibrium 1  *

 
 

θδ \  1.01 1.5 4 10 
0.5 66.67 66.22 62.78 59.60 

0.78125 82.05 81.91 80.84 79.85 
0.9 90.91 90.85 90.42 90.02 
0.99 99.01 99.00 98.97 98.93 

One-shot game 49.999 48.00  32.00 16.53 
 

1  The entries in the first four rows, which represent W  at the TTIR equilibrium of the 
repeated game, are calculated according to (A2) in the Appendix. For comparison, we also 
calculate  at the mixed-strategy equilibrium of the one-shot game according to (8). All 
entries are based on 

*

*U
100π = . 

 
 
 

Table 7: Conflict-Mitigating and Coordination-Enhancing Benefits of Turn Taking 1  
 
 

θδ \  1.01 1.5 4 10 
0.5 0.0009 (0%) 

16.67 (100%) 
1.50 (8%) 

16.72 (92%) 
13.75 (45%) 
17.03 (55%) 

25.92 (60%) 
17.15 (40%) 

0.78125 0.0011 (0%) 
32.05 (100%) 

1.77 (5%) 
32.15 (95%) 

16 (33%) 
32.84 (67%) 

29.90 (47%) 
33.42 (53%) 

0.9 0.0011 (0%) 
40.91 (100%) 

1.83 (4%) 
41.02 (96%) 

16.56 (28%) 
41.86 (72%) 

30.90 (42%) 
42.59 (58%) 

0.99 0.0012 (0%) 
49.01 (100%) 

1.87 (4%) 
49.13 (96%) 

16.89 (25%) 
50.07 (74%) 

31.48 (38%) 
50.92 (62%) 

 
1  For each cell, the top and bottom terms represent, respectively, the conflict-mitigating and 
coordination-enhancing benefits. They are calculated according to (25) and (26) respectively. 
The figures inside the parentheses represent the proportion of a particular welfare gain. 
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Figure 1: Two One-shot Battle of the Sexes Games with Different Degrees of Conflict 
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Figure 2: Repeated Battle of the Sexes Game with the Same Degree of Conflict ( 4θ = ) 
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