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Abstract 
 

This paper investigates the possibility of hedging discrete stochastic jumps and their tradeoffs in 
guaranteed funds under discrete dynamic hedging. Since a guaranteed fund price process is 
composed of diffusion and jump process, its expected rate of return is above the risk-free rate of 
interest. When delta dynamic hedging occurs at discrete instants, the rate differential will be 
manifested in non-zero expected hedging errors. We employ the dynamic guaranteed fund as our 
example, whose exotic fund structure excludes the possibility of static hedge. We derive a pricing 
model and develop hedging formulas for discrete dynamic guaranteed funds. We show our 
discrete-time delta hedging formulas induce smaller hedging errors than those based on applying 
the continuous-time hedging formula of Gerber and Pafumi (2000) at discrete instants. 
Nevertheless, this discrete-time model still incurs significant negative expected hedging errors 
induced partly by the guarantee jumps. We introduce a gamma-adjusted delta hedging strategy. 
The simulation results indicate that the strategy can effectively improve the discrete hedging 
performance of dynamic guaranteed funds.  
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1. Introduction 
 The increasing competition from peer financial institutions, the privatization of government 
social security programs1, and the need for protection by investors against downside risk have led 
to the inclusion of financial guarantees and other embedded options in many contemporary 
insurance products. Equity-linked insurance products that expose their investors or policy holders 
to investment risk are offered worldwide. These products usually protect their investors by a fixed 
benefit, or a multi-period minimum rate of return. The performance of these insurance products is 
typically linked to some reference portfolios, e.g., a stock market index. Brennann and Schwartz 
(1976) value a single-period maturity guaranteed equity-linked contract as an insurance contract 
with an embedded put option. Boyle and Schwartz (1977) determine an optimal investment policy 
between investing in the reference portfolio and a riskless reserve for a fund issuer to hedge 
against the investment risk of these guarantees. 
 
 Investment products of multi-period guarantees can be found in guaranteed investment 
contracts (GIC) sold by investment banks (see Miltersen and Persson (1999)). Many life 
insurance companies also offer contracts which guarantee the policy holders a fixed minimum 
annual percentage return. Grosen and Jorgensen (1997) investigate the value of a life insurance 
policy which contains an explicit guarantee that ensures the investor, upon surrendering, a certain 
minimum return during some specified period. In essence, these insurance contracts embed in 
them some forms of American-style early-exercisable options which require active monitoring of 
the value of the underlying insurance product by the policy holders in order to make informed 
early-exercise and contract rollover (Pedersen and Shiu (1994)) decisions.  
 
 In a series of papers, Gerber and Shiu (1999), Gerber and Pafumi (2000), Imai and Boyle 
(2001), and Gerber and Shiu (2003) introduce a dynamic guaranteed fund featured by automatic 
multi-period reset guarantees. The guarantees are dynamic because the fund price is upgraded 
through cash injection by the issuer whenever it falls below a certain threshold during its life. 
Thus, the fund provides a floor protection for an equity-index linked portfolio but does not 
require its investors to devise sophisticated early-exercise strategies. Moreover, the injections to 
the upgraded fund to replenish the value of the naked fund above the guaranteed level create a 
leverage on the value of the naked fund which enables the dynamic guaranteed fund investors to 

                                                 
1 The privatization increases the credit risk of the social security programs, inducing the investors under 
the privatized programs to seek further financial protection. For example, see the discussion in Pennacchi 
(1999). 
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participate in the growth in the fund value in times of good market returns.2 
 
 Although a dynamic guaranteed fund may not be replicated by a composite structure of 

basic put and call options3, it internalizes the call option characteristics by allowing its investor to 
participate in an upside market with a floor protection and the put option characteristics by 
leveraging the downside risk with respect to the guaranteed level to enhance the investor ultimate 
payoff. Gerber and Pafumi (2000) derive a closed-form pricing formula for the continuous 
dynamic guaranteed fund and the rebalancing portfolio strategy between a risky upgraded fund 
and a riskless asset for the fund issuers. However, monitoring of the fund is usually at 
discrete-time instants. Imai and Boyle (2001) investigate the value of the discretely monitored 
dynamic guaranteed fund using a Monte Carlo simulation approach. In this paper, we develop an 
analytic pricing formula for the discrete dynamic guaranteed fund, building upon the insight that 
the total incremental injections depend on the minimum value over the life of the contract, as in 
the case of pricing a discrete lookback option. Our analytic pricing formula is derived from the 
risk-neutral expectation approach. We adopt the probability density function of lookback options 
in AitSahlia and Lai (1998) to calculate the expected payoff, given the possible occurrence of the 
minimum value over the various discrete time points of the life of the contract. The analytic 
pricing formula also enables an analytic calculation of the hedging parameters of a synthetic 
portfolio rebalancing strategy to hedge against the investment risk of the fund issuers. We 
demonstrate that the delta of our discrete dynamic guaranteed fund valuation model has a call 
feature, whereas its gamma has a put feature.  
 
 Intuitively, a guaranteed fund price process can be viewed as a composition of diffusion and 
jump process. The diffusion is derived from the standard stochastic dynamic assumption of the 
underlying naked fund price process, whereas the jumps are consequences of value injections to 
replenish the fund value above the guaranteed level when needed. We assume the naked fund 
price process to follow a risk-neutral Brownian motion, and therefore the expected rate of return 
is the risk-free rate of interest. A hedging error of a delta-hedged portfolio is the costs of 
establishing the risky and risk-free assets for the current hedging portfolio allocation subtracted 
by the income from liquidating the risky and risk-free assets brought forward by the previous 
period portfolio allocation. Without jumps, the delta hedging portfolio allocation between the 
naked fund and the riskless asset over discrete-time instants will on average lead to zero hedging 

                                                 
2 An example is the dynamic guaranteed fund managed by SG Asset Management. 
3 See Gerber and Shiu (2003). This problem leads us to consider dynamically, rather than statically, 
hedging the dynamic guaranteed fund. 
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errors.  
 
 Since money is injected to replenish the fund to its guaranteed level during discrete dynamic 
hedging, the injected amount can be translated in dollar terms to upgrade the naked fund price. 
This upward movement of the fund price causes a sudden rise in the naked fund price to the 
guaranteed level, i.e., a naked fund price jump. In turn, the jump in relative position alters the 
stochastic distribution of the terminal value of the guaranteed fund and this adds a differential rate 
to the risk-free rate of interest. Of course, this rate difference will be wiped out when the 
guaranteed fund is hedged continuously over its life because the value injection will become 
infinitesimally small. In the context of dynamic guaranteed fund, the guarantee jump arises from 
the additional number of naked fund units injected. The random and monotonically increasing 
number of units of naked fund holding induces the process of hedging errors over its life to have a 
non-zero expected value. When delta dynamic hedging occurs at discrete instants, the 
requirement of guarantee protection will be translated in monetary terms into a negative expected 
total hedging error.    
 
 We explore the delta hedging performance by rebalancing hedging portfolio at monthly reset 
dates over a simulated year using our analytic discrete dynamic guaranteed fund hedging 
formulation as opposed to the formulation in Gerber and Pafumi (2000). The Monte Carlo 
simulation results suggest that, using our formula, the average total hedging error is higher and its 
variance are lower than those based on Gerber and Pafumi (2000). This shows that incompatible 
model application to discretely price and hedge the dynamic guaranteed fund costs the delta 
hedger. However, in both cases, the total hedging errors are often negative. Since the hedging 
amount of the naked fund holding determines the stochastic distribution of the terminal payoff of 
the hedging portfolio, we can change the stochastic payoff structure by portfolio re-allocation or 
changing the hedge ratio. As a consequence, the jump sizes, and hence the expected rate of return 
out of hedging the guaranteed fund over discrete instants are changed. In particular, when the 
hedge ratio on the risk-free asset is adjusted by a gamma factor, we show that the monetary outlay 
is substantially reduced. This gamma adjustment amounts to holding additional riskless reserve, 
against the stochastic guarantee jumps, over that of unadjusted delta hedging throughout the 
hedging process.   
 
 This paper is organized as follows. The next section reviews the theoretical structure of a 
dynamic guaranteed fund with reference to lookback options in a continuous sampling geometric 
Brownian motion framework. Section 3 discusses the pricing and hedging formulations of the 
discrete guaranteed fund in a geometric Brownian motion framework. They are derived by an 
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extension of the pricing formulas of the discrete hindsight options in AitSahlia and Lai (1998). 
An efficient computational procedure for frequent and/or long maturity monitoring, modifying the 
Tse, Li and Ng (2001) procedure, is offered for our pricing and hedging of the discrete dynamic 
guaranteed fund. A synthetic portfolio rebalancing investment strategy in a discrete sampling 
setting is developed to hedge the investment risk of the fund monitored at discrete time instants. 
Simulation results are listed in Section 4. It shows the possible divergence of the prices between 
the discrete and continuous guaranteed fund when monitorings are infrequent. The section also 
investigates the performance of our synthetic hedging portfolio compared with that of Gerber and 
Pafumi (2000), and the costs and benefits of hedging performance improvement after modifying 
the conventional delta by a gamma factor. Section 5 concludes.  
 

2.  The Guaranteed Investment Fund and Lookback Options 

2.1  The Guaranteed Investment Fund 

 Gerber and Pafumi (2000) investigate an investment fund with dynamic guarantees. The 
guarantees are in the form of repeated fund unit injections over the life of the fund to maintain the 
fund amount at the agreed upon guaranteed level. A fund unit is a unit of account to determine the 
value of the investor fund holding, i.e., the value of the investor total holding is the price of the 
fund multiplied by the number of fund units that he holds where the fund price is the per unit 
value. The naked fund without guarantees is modeled to follow a geometric Brownian motion. 
Let F(t) denote the price of a naked fund at time t. Then, its price is represented by 

0,)0()( )( ≥= + teFtF tWt σµ                      (1) 
where F(0) denotes the naked fund price at time 0, µ  is the constant drift rate of the geometric 

Brownian motion, σ  is the constant volatility of the geometric Brownian motion, and W(t) is a 

standard Weiner process. The risk-neutral process under constant risk-free interest rate r is 

0),(~*)(ln ≥+= ttWddttFd µ                     (2) 

where ,2
2
1* σµ −= r and )(~ tW  is a standard Wiener process under the risk-neutral measure. To 

investigate the dynamic property of the guaranteed fund, Gerber and Pafumi (2000) replace the 

risk-neutral geometric Brownian process given in equation (2) by an upgraded fund price )(~ tF  
which will receive an injection of the additional number of fund units to replenish the fund price 

to the constant level K whenever the upgraded fund price )(~ tF  falls below K. The upgraded 
fund price )(~ tF  is calculated as follows: 

)()()(~ tntFtF =                            (3) 
and 
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}max,1max{)( )(0 sF
K

st
tn

≥≥
=  

where K denotes the constant guaranteed level (or barrier) of the guaranteed investment fund, and 
)(tn  denotes the total number of fund units at time t per one unit of the fund invested at time 0. 

 
 Let A(F(0), T) denote the discounted expected value of the guaranteed investment fund 
given in equation (3) at time 0, where T is the maturity date of the guaranteed investment fund. A 
risk-neutral expectation of the discounted price of the guaranteed fund at maturity time T leads to 
equation (2.2) in Gerber and Pafumi (2000) which is  

)](~[)),0(( * TFEeTFA rT−=                     (4) 

where [.]*E  represents the expectation operator under the risk-neutral measure given in 

equation (2). The value of the fund protection at time t (T ≥ t ≥ 0) is 

)(~)),(~()( tFTtFAtV −=                        (5) 

with V(T) = 0.4 Gerber and Pafumi (2000) derive a closed-form formula as a result of equation (4) 
as follows: 
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where (.)Φ  represents the cumulative standard normal distribution function.5 

    

2.2  The Lookback Options 

 Equation (4) suggests that the discounted value of the expected upgraded fund depends on 
the terminal price of the naked fund F(T). However, the recurrent injections to maintain the price 

                                                 
4The value of the equity forward at time t is ].)([)(

*)(
TFEetF

tTr −−
=  Hence, its protection value at any time t prior to the 

expiration date T is zero, i.e., V(t) =0. 
5 For a continuous dynamic guaranteed fund whose guaranteed level grows exponentially at a constant rate γ i.e., 

.}max,1max{)(
)(0 sF

sKe

st
tn

γ

≥≥
=  Gerber and Pafumi (2000) replace the variables )(~ tF  by ,)(~ tiFe

tγ
 and F(t) by .)(tFe i

tγ
 Thus, 

)}.(~)}(~)),0((
)(**

TiFeETFeETFA
TrrT γ−−−

==  Consequently, the formula for a continuous dynamic guaranteed fund with a 

guaranteed level growing exponentially at a constant rate γ is the same as equation (6) but the interest rate r is replaced by r-γ. 
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of the upgraded fund )(~ tF  above the constant level K at time t, T ≥ t ≥ 0, suggests that it also 
depends on the history of the evolution path F(t), T ≥ t ≥ 0. Since the sum of the incremental 
injections to replenish the fund over the finite time period [0,T] is the maximum potential loss 
over the period, its price must reflect the maximum potential loss of the fund issuer relative to the 
guaranteed level K over the period [0,T] leading to the lookback option formulation. The 
formulation  

}max,1max{ )(0 tF
K

tT ≥≥
      (7) 

itself in equation (3) resembles the terminal payoff of a fixed strike lookback call option with 
respect to the maximum of K/F(t), T ≥ t ≥ 0, and the fixed strike at the value 1. However, the 

maximum ratio )(0max tF
K

tT ≥≥  occurs when the random price F(t) attains a minimum over the 

period [0, T]. So, the guaranteed fund has the lookback call option formulation but has the 
lookback put option characteristic, which protects the investment fund against its downside risk. 
Because of the downside protection over the life of the dynamic guaranteed fund, we would 
collect a protection value today commensurate with at least the current early exercise value of the 
fund. Hence, the fund will never be exercised early to capture a downside protection during a 
down drift of the naked fund value.  Section 3 in Imai and Boyle (2001) provides a proof of this 
intuition. Hence, rather than discussing American-style dynamic guaranteed funds, this paper 
only focuses on the pricing and hedging of the European-style dynamic guaranteed fund.  
 

3.  Dynamic Guarantees under Discrete Sampling 
 Whereas continuously sampled closed-form formulas offer exact and efficient valuation of 
the lookback options, Broadie, Glasserman and Kou (1999), and Heynen and Kat (1995) illustrate 
the possible mispricing if the closed-form formulas are mistakenly used to price an option which 
actually is monitored at fixed discrete dates. We develop below analytic pricing and hedging 
formulas of the discrete dynamic guaranteed fund based on the hindsight option pricing analysis 
in AitSahlia and Lai (1998).  In addition, we introduce an efficient computational procedure 
which calculates the derived formulas even with frequent monitoring. 
 

3.1 The Discrete Guaranteed Fund Pricing Formula 

 Let the guaranteed fund be monitored at discrete time points ∆n  for ,,,1,0 mn L=  where 
the consecutive time points are separated by equal time interval m

T=∆ , and m denotes the total 

number of monitorings. The random price of the naked fund at time ∆n  is ,)0( nUeF Un is a 
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random value under stationary Gaussian process at time ∆n  for mn ,,1,0 L=  and  

nU ∼ ),( 2
nn σµφ  where ,,* ∆=∆= nn nn σσµµ and (.)φ is a univariate normal probability 

density function.6 We denote the minimum value of Un over the time interval [0,T] by Mm, i.e.,  
}.0:min{ ≥≥= νν mUM m  

The first escape time is defined as the first time (or the minimum amount of time) for a dynamic 
path to take on a defined characteristic. Let the first escape time for νU  to become a negative 
value be −τ  and the first escape time for νU  to become a positive value be +τ . Formally, 

},0:inf{ νντ U≥=−  

and 
}0:inf{ >=+ νντ U  

where inf(.) is an infimum mathematical operator. 

 
AitSahlia and Lai (1998, page 229, equation (9)) show that the probability that the minimum 

value Mm falls in the infinitesimal interval )0( xdx ≥  can be calculated by the following equation 

)();()1()(),|(
1

210 ντνττ ν
ν

−>∈>Σ+−>∈=≠∈ −+

−

=
− mPdxUPmPdxUPUUMdxMP

m

mmm  (8) 

where P(.)  represents the cumulative probability distribution function.7  
 
 Consistent with our discussion in Section 2, Imai and Boyle (2001) highlight an alternative 
representation of the terminal price of the upgraded fund in their equation (9) as follows: 

)~,1max()()(~ mMeKTFTF −=  

where )0(
~

F
KK =  for γ = 0. Therefore, the value of the discrete guaranteed fund at time 0, 

,)),0((~ TFA  is 
)].~,1max()([*)),0((~

mMrT eKTFEeTFA −−=  
The value of the discrete dynamic guaranteed fund protection at time t is 

)(~)),(~(~)(~ tFtTtFAtV −−=  

                                                 
6 Since )0()0( 0 FeF

U
= , it is clear that .00 =U  

7
)0,,0()( 1 >>=−>− −νντ mUUPmP L and ).0;,0,,0();( 11 xdxUUUPdxUP ≥∈≥≥=∈> −+ νννντ L  The idea 

behind their derivation of the probability of a particular observation at time point ν to be a minimum value Mm is that for 

mMU =ν ,  

,10 ,, ννν UUUU ≥≥ −L  and .,,1 ννν UUUU m ≥≥+ L  

Since the increment )( jiUU ji >−  are time-independent under Brownian motion, this implies 

,0,,0,0 11 UUU ≥≥≥ − Lνν  and .0,,0,0 21 >>> −νmUUU L  
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with .0)(~ =TV  
Equation (8) suggests that equation (9) is composed of a series of expected values to take 

account of the random minimum value that occurs at various discrete time points. The results of 
AitSahlia and Lai (1998) reviewed in our Section 3.1 help identify the probability density 
function of the discrete dynamic guaranteed fund, which is utilized for our risk-neutral expected 
value calculation. In view of the assumption that the price of the naked fund F(t) follows a 
geometric Brownian motion, the expected value )](~[* TFE  in equation (9)  may be recast into a 

series of multivariate probability values through applying Proposition 1 in Tse, Li and Ng (2001). 
In sum, by applying the results of AitSahlia and Lai (1998) and Tse, Li and Ng (2001), we can 
derive the pricing formula for the value of the discrete dynamic guaranteed fund )),0((~ TFA  as 

follows.8 
 

Proposition 1 
The pricing formula of the value of the discrete dynamic guaranteed fund )),0((~ TFA over [0,T] 
monitored at m time points of equal time subintervals in [0,T] is expressed as9 

}1]~[)1~,0){max(0()),0((~ 12

1
+−+−= ∆−

=
−∑ νν

ν

ν
νββ BBKeKFTFA rm

mm   (11) 
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8 The formula for a discretely sampled lookback put options )),0((~ TFL  is 

]}~[1)1,0){max(0(

1
)1(2 )1(2 })(*
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where ,10,)0(
~ == αF

K
K  and .
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Z −−

∫ ∞−∫ ∞−= L  

9 Similar to the discussion in Section 4 of Gerber and Pafumi (2000), the formula for the discrete dynamic guaranteed fund with 

guaranteed level growing exponentially at constant rate γ can be deduced from replacing r in equation (11) by r-γ. 
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the inverse of ,)()(,)(, 212 i
i

i idididZ σ
σ

µ
ν +== for ,,,1 νL=i ,)(

*
*
2

νσ
νµν

ν
+−

=d  

,)()( *
2

*
1 νσνν += dd )],~ln(,0min[* Kv = and .~

)0(F
KK =  

 

Proof 
See Section A.1 of the Appendix. 
 
 The term m

rT KFe β)1~,0max()0( −  represents the expected protection value when F(0) is the 
minimum value over the life [0,T] of the fund. The value mβ  is the probability that F(0) is the 

minimum value. The expected protection value is derived on the assumption that the terminal 
value F(T) is not less than the minimum value F(0). However, this expected protection value 

occurs only when the fund needs to pay 1~ −K  additional units for the fund protection over the 
life of the fund. Hence, the fund protection leads to the multiplication factor ).1~,0max( −K  
 

 The term ∑ −=
∆−

−

− m r
m

rT BBKeFe 1
12 ]~[)0( ν νν

ν

νβ represents the expected protection value 
when the minimum value occurs at the 1st to the (m-1)th monitoring fixed time points. The value 

21
1 νν νβ Bm

m∑ −
= −  denotes the sum of the joint probabilities for the occurrences of the minimum value 

mM  in the time interval .][
)1(

, m
Tm

m
T −  The terminal payoff )0),()(max( ~ TFeTF mMK −−  suggests 

that additional fund units will be injected for fund protection only when ).ln( ~KmM <  In 
addition, the minimum value mM  has to be less than the initial value .00 =U  Consequently, 

)].ln(,0min[ ~KmM <  

 
 The term ])[0( 12~

m

rT

m BeBF K −  represents the expected protection value when the minimum 

value occurs at the mth monitoring time point. The probability that the minimum value occurs at 
the terminal date is .2

mB  The terminal payoff under such an occurrence is )0),(~)0(max( TFKF − . 

Since KF ~)0(  is not random, the payoff )0),(~)0(max( TFKF −  is of a European put option 
with strike price KF ~)0( . This suggests that the dynamic guaranteed fund would guarantee to the 
least at the strike value KF ~)0(  even if the minimum value )()0( TFeF mM =  occurs at the 
terminal date T. 
 
 In sum, a dynamic guaranteed fund protects its investor against losses at a strike level 

KF ~)0(  but it leverages the fund gain through the contractually required injection of additional 
fund units based on the minimum value attained over the life of the dynamic guaranteed fund 
from time 0 to time 

m
Tm )1( − . Thus, an investor would not be required to exercise early his fund to 

capture the gain, unlike in the American-style one-time protection guaranteed fund structure. 
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3.2  The Imai and Boyle Pricing Formula 

 While Proposition 1 provides an exact analytic formulation for the value of a discrete 
dynamic guaranteed fund, Imai and Boyle (2001) establish an alternative formula by applying the 
approach of Broadie, Glasserman and Kou (1999) to the valuation of a discrete dynamic 
guaranteed fund. An adjustment based on the continuously monitored option formula is made in 
Broadie, Glasserman and Kou (1999) to derive approximate formulas for the discrete barrier and 
lookback options. By applying the Broadie, Glasserman and Kou (1999) adjustment procedure to 
the continuously monitored guaranteed fund pricing formula of Gerber and Pafumi (2000), Imai 
and Boyle (2001) derive a similar formula for the value of the discrete dynamic guaranteed fund 
in their equation (8). On the whole, their pricing formula for a discretely monitored dynamic 
guaranteed fund modifies the guaranteed level of the continuously monitored dynamic guaranteed 
fund given in equation (6), and adds a correction term to the modified pricing formula. Without 
the correction term, the calculation is efficient but “barrier too close” (i.e., error systematically 
increases as the barrier moves close to the current price level) is found to occur in the pricing of 
the discrete barrier or lookback options. The correction term is calculated by Monte Carlo 
simulation. It slows down the computation of the discrete dynamic guaranteed fund value given in 
equation (8) in Imai and Boyle (2001) and leads to a confidence interval to capture the actual 
value. Our analytic formula based on the risk-neutral expectation given in equation (11) is an 
exact valuation formulation. However, its degree of accuracy still hinges on an appropriate 
numerical procedure for delivering accurate probability values. We discuss below an efficient 
numerical procedure that can calculate probability values with high precision. The relative 
performance of the two formulas is discussed in Section 4. Although the results of Imai and Boyle 
(2001) are not as fine as our results, they provide a means of validating the authenticity of our 
formula given in equation (11) for pricing a discrete dynamic guaranteed fund. 
 

3.3  A Modified Numerical Procedure 

 We modify the numerical procedure in Tse, Li and Ng (2001) for our discrete dynamic 
guaranteed fund calculation, by imposing a fixed integral cutoff limit and an unscaled 
multivariate probability distribution on their original procedure. To value the discrete dynamic 
guaranteed fund, an efficient computational procedure is necessary for two reasons. First, our 
discrete dynamic guaranteed fund formula given in equation (11) requires the consideration of the 
occurrence of minimum naked fund price at every monitoring date, which could lead to a long 
series of expected value calculations. Second, a fund by its nature is usually of longer maturity 
than an option. This characteristic can proportionally increase the number of monitorings. 
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Therefore, an efficient computational technique is necessary to cut down on computational time 
while retaining an acceptable degree of accuracy. Tse, Li and Ng (2001) find that the inverse of 
the full rank square coefficient matrix of the random state variables generated under Brownian 
motion is a tridiagonal matrix. Based on this matrix, they derive the numerical efficiency from 
exploiting the recursive functional structure in the valuation of their discrete barrier and hindsight 
options. They demonstrate that the order of computational complexity of a discretely sampled 

financial derivatives under geometric Brownian motion is (p+(m-1)p2) where p is the number of 
computational points per integral of the Gaussian quadrature method. However, p grows 
nonlinearly in value when the number of monitorings m increases. In terms of computational 
complexity, our modified procedure is similar to that of Tse, Li, and Ng (2001). However, the 
number of computational points per layer, p, grows roughly linearly. So, this enables the 
calculation of fairly accurate probability and/or expected payoff value of frequent monitoring in a 
much shorter time.  
 

3.3.1  Error Analysis of the Modified Numerical Procedure 

 The modified Tse, Li and Ng (2001) procedure proposed by us trades error control for 
efficiency. We identify the numerical integrity of the modified procedure by the following 
proposition.    
 

Proposition 2 
For a continuous function  

 ), x,(xG  ) x,(xG )(xG  ) x, ,G(x m1-mm21211m1 LL =  

the absolute error between its m-variate integral and its m-variate numerical sum is bounded 
below by m ε, i.e., 

|)(G-d,,(|   m mm
mx

*
m)1

1

xx ∑∫∫≥
mI

m

I

xxG LLε                (12) 

where  

|,),(G-dx ) x, ,G(x|  
ix

*
i

iI

1ii1-i ∑∫ −= ii xxLε  

and is a constant, |.| is an absolute value operator, iI  is the integral domain for the random 

variable xi, Gi is a recursive functional of the random variables xi-1 and xi and G is a continuous 
functional of the random variables .,,1 mxx L  

 
Proof 
See Section A.2 of the Appendix. 
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 Proposition 2 is useful for error estimate only if .|)x,(xx G-dx ) x, ,G(x|  i1-ii

*

iiiI i1-i ∑∫= Lε  This 

implies that the integration limit and the numerical integration error for the underlying function 
over the integration range per layer should be the same. Under this fixed limit, Proposition 2 
suggests that the overall numerical errors including cutoff and numerical integration errors will at 
most grow at a linear rate as m increases. With this proposition, an efficient calculation of a fairly 
accurate discrete hedging formula discussed below using our modified Tse, Li and Ng (2001) 
procedure is supported.  
 

3.4  The Synthetic Hedging Strategy 

 To protect A(F(0), T) at level K for a duration [0,T], Gerber and Pafumi (2000) introduce the 
idea of replicating portfolio as a hedging strategy to replicate the terminal value of the dynamic 
guaranteed fund  which requires the issuer to continuously rebalance his portfolio between the 

risky asset )(~ tF  and a riskless asset.10 The strategy calls for an allocation at time t the amount 

 )),(~()(~ tTtFAtF f −  

to the risky asset, and the amount  

)),(~()(~)),(~( tTtFAtFtTtFA f −−−  

to the riskless asset, where (.)fA  denotes the partial derivative (or delta tδ ) of 

)),(~( tTtFA − with respect to ).(~ tF 11 As in the continuous sampling formulation of Gerber and 
Pafumi (2000), we deduce our synthetic portfolio rebalancing strategy under discrete sampling 
which allocates at time t an amount  

)),(~()(~ tTtFAtF f −  

to the risky asset ),(~ tF  and an amount  

)),(~(~)(~)),(~( tTtFAtFtTtFA f −−−  

to the riskless asset. Without loss of generality, we set T-t = T'. Therefore, )),(~(~ tTtFAf −  is now 

                                                 
10 Unlike the portfolio rebalancing hedging strategy of the Black-Scholes European options which corrects the option values with 

respect to the initial hedging portfolio by the changes in the naked investment fund and riskless asset holdings throughout the fund life, 

the rebalancing portfolio is re-constructed with respect to the upgraded investment fund and riskless asset each hedging period in 

Gerber and Pafumi (2000). Since F(t) instead of )(~ tF  is tradeable, the actual portfolio holding of the risky asset at any time t is 

)),(~()( tTtFAtn f −  units of F(t). 
11 For synthetic investment fund protection of the continuously sampled dynamic guaranteed fund, see equations (5.6) to (5.7) in 

Gerber and Pafumi (2000). 
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equal to ).'),(~(~ TtFAf  The value )'),(~(~ TtFAf  can be derived as follows.12 

KBTtFA m
mf

~1for1)'),(~(~ 1
'

'
1 ≥−= ∑ = − ννν β                 (13) 

where 
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 Based on the above analytic delta formula, we can also calculate the analytic gamma ( tΓ ) 

formula which is the second partial derivatives of )'),(~(~ TtFA  with respect to ).(~ tF  The gamma 

(.)~
2f

A  formula is 

1'

1
')'),(~(~

2 ν
ν

νβ bTtFA
m

mf ∑
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12 Merton (1976) recognizes that a perfect hedge for the jump risk may not be practically feasible. Since the risks are not completely 

hedged, he discusses (in his page 132) how the portfolio returns under this hedging strategy are distributed between the periods with 

and without jumps. Whereas the expected rate of loss due to jumps in Merton (1976) is offset by the mean rate of returns of the 

diffusion process, our upgraded fund price process does not have the same constraint. In fact, the frequency and the size of the jumps 

in our guaranteed price structure depend on how often and how much a geometric Brownian motion of the naked fund prices fall 

below a pre-set guaranteed level. These structural differences create an opportunity for hedging improvement. 
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 In Figure 1a, we plot the values of the discrete dynamic guaranteed fund with the guaranteed 

level K set at 100. They increase with the increase in the upgraded fund price ).(~ tF  Figure 1b 
shows that the delta value is between 0 and 1. Hence, it is a delta of a call feature. In Figure 1c, 
the gamma value is negative suggesting that it is a gamma of a put feature. From the discussion in 
Section 3.1, the value of downside protection also has a put feature. Consequently, we can infer 
that the protection value of the discrete dynamic guaranteed fund may be captured by the 
curvature of our discrete dynamic guaranteed fund valuation model with respect to the upgraded 

fund price ).(~ tF  Since the price of an equity forward under risk neutral expectation is 
)],(|)([)( *)( tFTFEetF tTr −−=  we can infer that the protection value is the discounted expected 

value of the price upgrading or the price jumps to remain above the guaranteed level, i.e., 

.t|FTF- Et|FTFE e(t) V **-r(T-t) )]}()([)]()(~[{~
=  In the next section, we demonstrate that a simple 

delta dynamic hedging creates negative total hedging error. Thus, adjusting the delta by a gamma 
factor in our model for two-asset delta hedging may retrieve the protection value caused by the 
jump injections of the discrete dynamic guaranteed fund which was lost during the unadjusted 
delta dynamic hedging of the fund. Figure 1c shows that gamma is most negative when the 
upgraded fund price is around the guaranteed level. This is consistent with our intuition that the 
jump impact on our valuation model is the largest around the guaranteed level and then 
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diminishes when the upgraded fund price moves further above the guaranteed level. Thus, the 
gamma formula is useful for our coming discussion of retrieving the protection value of the 
discrete dynamic guaranteed fund.  
 

3.5  A Gamma Adjustment of Delta-Hedged Portfolio 

 In this section, we investigate the impact of gamma adjustment of the delta on the discrete 
dynamic hedging performance of a guaranteed fund. As above, we require a delta hedging 
portfolio consisting of risky and riskless assets to replicate the terminal value of the fund. 
However, the portfolio allocation strategy between the risky and riskless assets need not be a 
self-financing strategy. Under discrete dynamic hedging, this period hedging error comes from 
the difference between the income brought forward from liquidating the preceding period hedging 
portfolio and the cost of constructing the current period hedging portfolio. The total hedging error 
is the sum of individual period hedging errors. Next, we introduce the gamma adjustment factor. 
 
 Since the protection value may have lost in the delta dynamic hedging process, adjusting the 
delta by a gamma factor, which captures the value of downside protection, may to a large extent 
reduce the expected total hedging error. To simplify notations, we denote 

)())(~(~))(~(~)(~ i∆, n, T-ttFA, , T-ttFA, tF f respectively by ,~~
ttt , δc, F and .∆in  The ith period 

hedging error after a gamma adjustment of the delta hedging portfolio at the (i-1)th period is 

 .~]~~(~[~)( )1()1(
2

)1()1()1()1( i∆∆i-∆i-∆i-g∆i-∆i-
r∆

i∆∆i-gi∆ c - F)FσΓθδ-c  eF  δ  θHI ++=       (15) 

where θg = 0 and 
2
1  respectively for an unadjusted and a gamma-adjusted delta hedging 

portfolio.13 
 
 As a whole, the expected value of the total hedging error can be summarized by a linear 
equation  

.FΓ Eσe -θHI E* θHIE
m

i
∆i-∆i-

*r∆
g

m

i
i∆

m

i
gi∆

* ]~[)]0([])([
1

2
)1()1(

2

11
∑∑∑
===

=           (16) 

                                                 
13 Unlike the plain vanilla Black-Scholes European options, the underlying asset of a guaranteed fund is usually not a tradeable asset. 

In particular, the upgraded fund is the underlying asset of the dynamic guaranteed fund. In reality, the two-asset delta dynamic hedging 

portfolio can only be constructed by its closest tradeable surrogate risky asset: the naked investment fund. The value ∆iF~ in the first 

term given in equation (15) then has to be replaced by ∆∆− ii Fn )1( to reflect the hedging difficulty caused by the non-tradeability of 

the upgraded fund. 
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Equation (15) is consistent with the Ito's lemma in that it adjusts the discrete dynamic guaranteed 

fund value by delta and gamma with respect to the upgraded fund ).(~ tF  However, the dynamic 
hedging is implemented under a two-asset portfolio of risky and riskless assets. In the next 
section, numerical experiment suggests that 0)]0([ 1 <∑ =

m
i i∆

* HIE  reflecting that the issuer has to 

pay a protected rate of return of the guaranteed fund higher than the risk-free rate of interest. 
Since the gamma value ∆− )1( iΓ is negative, ∆∆ 1)-(i

2
1)-(i2

1 ~FΓ σ  in equation (15) cuts down the delta 
value ∆− )1( iδ  in the riskless asset amounting to holding additional riskless reserve to capture the 

rate differential over the risk-free rate of interest induced by the guarantees. However, there does 
not have a gamma adjustment at the maturity date T because its protection value is zero. At this 
date, the delta value is equal to 1. Hence, the maturity value of the discrete dynamic guaranteed 
fund is replicated by the value of the risky asset of the hedging portfolio. Altogether, the gamma 
adjustment of the delta leads to an increase in value of the expected total hedging error given in 
equation (16).  
     
 So far, our discussion of hedging improvement relies on the general structure of guaranteed 
funds, and therefore, it applies liberally to a wide variety of guaranteed funds rather than to the 
dynamic guaranteed fund alone.14 Under discrete dynamic hedging and by using Monte Carlo 
simulation, we will study examples for the liquidity requirement, the individual period hedging 
errors, and the distribution of the total hedging error before and after gamma adjusted delta 
hedging asset re-allocation in the next section. 
 

4.  Simulations 
 Simulation studies are implemented to investigate the accuracy of our formula in calculating 
the value of dynamic guaranteed fund protection compared with that in Imai and Boyle (2001). 
We then explore the hedging performance using our analytic discrete dynamic guaranteed fund 
hedging formulation instead of the continuous dynamic guaranteed fund hedging formula in 
Section 5 of Gerber and Pafumi (2000), when monitorings over the simulated year occur at 
monthly time points. Finally, we investigate some properties arising after a gamma adjustment of 
a delta-hedging portfolio.  
 
To facilitate the investigation of the hedging performance of a discrete dynamic guaranteed fund 
and its tradeoffs, we require a reasonably fast numerical procedure to deliver accurate pricing and 

                                                 
14 Equity-linked notes have similar valuation structure. For example, consider the principal-guaranteed equity-linked note 

),max(~ KFF tt = which can be expressed as )(~ tnt FtF =  where .
t

F

K
,   tn )1max()( =  
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hedging results of the guaranteed fund. The Tse, Li and Ng (2001) procedure with fixed cutoff 
limit provides a reasonable environment for Proposition 2 to apply because it not only has a fixed 
cutoff limit but also allows us to control the numerical integration errors by the computational 
point estimation formula given in equation (12) in Tse, Li and Ng (2001). To identify the 
efficiency and the degree of accuracy of our results, we calculate individual probability values 
benchmarked by the counterpart values using the limit-adjusting procedure given in Tse, Li and 
Ng (2001).  

Table 1 

A Comparison of Probability Valuesa 

-1.5c 0 1.5 mb 

TLNd TLNe TLN  TLNf TLN TLNf 

1    066807201219 0.066807201261 0.499999999950 0.499999999993 0.933192798681 0.933192798724 

 (0.032)f (0.000) (0.032) (0.000) (0.031) (0.000) 

2 0.028590881592  0.028590881577 0.375000000000 0.374999999985 0.894976479054 0.894976479040 

 (0.032)  (0.000) (0.031) (0.000) (0.016) (0.000) 

7 0.005738568673  0.005738568628 0.209472656250 0.209472656202 0.809452586866 0.809452586817 

 (0.083)  (0.063) (0.078) (0.063) (0.093) (0.063) 

12 0.002836380302   0.002836380241 0.161180257797 0.161180257724 0.770331628955 0.770331628881 

 (0.344)  (0.126) (0.343) (0.160) (0.343) (0.155) 

36 0.000666743355  0.000666743274 0.093705675297 0.093705675153 0.692132063952 0.692132063798 

 (11.162)  (1.478) (11.145) (1.163) (11.121) (1.289) 

52 0.000409848596  0.000409848515 0.078051172374 0.078051172203 0.667031883073 0.667031882885 

 (46.475)  (2.514) (46.475) (2.577) (59.505) (2.646) 

aThe probability values are calculated assuming that the underlying stochastic processes follow Brownian motion. 
bThe values m stand for the number of monitorings. 
cWe use the same upper limit values for all the monitoring dates.  
dThe values under columns TLN are computed based on the computational procedure in Tse, Ng and Li (2001). We set the cutoff error 
tolerance at 10-10 and the numerical integration error tolerance at 10-13 for our calculation using this procedure.  
eThe probability values calculated under column TLNf are based on the computational procedure in Tse, Ng and Li (2001) with fixed 
cutoff limit. We set the cutoff at -6.75 and the numerical integration error tolerance at 10-13 for our calculation using this procedure.  
fThe values in parentheses underneath their probability values are the computational time in seconds for computing these probability 
values using MATLAB version 6.5 software and 1.6GH Pentium IV personal computer. 
 

 In Table 1, the numerical figures under columns TLN are computed by the variable 
cutoff-limit numerical procedure in Tse, Li and Ng (2001), whereas the numerical figures under 

the columns TLNf are computed by the fixed cutoff-limit modified procedure of Tse, Li and Ng 
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(2001). The computational errors of the probability values under columns TLN are controlled to 
be accurate to 10 decimal places. By choosing the lower cutoff limit at -6.75, the Tse, Li and Ng 
(2001) probability values under fixed limit are accurate to 9 decimal places with 52 monitorings. 

A comparison of the corresponding figures under columns TLN and TLNf shows that the 
computational errors grow roughly at a linear rate in accordance with the growth in the number of 
monitorings m. Thus, the probability values with 260 monitorings should be accurate to at least 7 
decimal places. Therefore, the 4-decimal place numerical figures reported in Tables 2 to 4 are 
exact provided that equations (11) and (13) provide the correct pricing and hedging formulas of 
the discrete dynamic guaranteed fund.  
 

4.1 Analytic Valuation of Dynamic Guaranteed Fund Protection 

 To justify the validity of our valuation formula given in equation (11) for exact pricing of 
discrete dynamic guaranteed funds, we compare the numerical results of the protection values 
derived from our valuation formula under similar terms with those in Imai and Boyle (2001). In 
Table 2, the values under column CDGFP are continuously sampled dynamic guaranteed fund 
protection values calculated using the analytic formula in Gerber and Pafumi (2000). The values 
under column MC are Monte Carlo simulation results copied from Table 10 of Imai and Boyle 
(2001). The approximate formula of Imai and Boyle (2001) is derived from an extension of 
Broadie, Glasserman and Kou (1999). Since the correction term of their discrete dynamic 
guaranteed fund pricing formula is computed by Monte Carlo simulation, a confidence interval is 
reported. The values of the discrete dynamic guaranteed fund protection under column DDGFP 
are calculated using our analytic formula given in equation (11).  
 
First, our values are consistently smaller when the number of monitorings declines from weekly 
monitoring to monthly monitoring. This conforms to our intuition that the amount of expected 
total guarantee injections decreases when the number of monitorings is reduced. Compared with 
the numerical intervals of Imai and Boyle (2001), our numerical values for the discrete dynamic 
guaranteed fund values stay within their intervals for short maturity and close-to-money. Those of 
our values that go out of their numerical ranges are higher but at most by a second decimal place 
difference. Whereas their continuous formula correction approach is conceptually different from 
our discrete probability valuation approach, the consistency of the two sets of results mutually 
support both conceptual frameworks. However, with our analytic valuation formula, it enables an 
easy derivation of the analytic delta- and gamma- hedging formulas of the discrete dynamic 
guaranteed fund. In the following, we explore the hedging performance using the continuous 
formulas in Gerber and Pafumi (2000) and our discrete analytic valuation and hedging formulas 
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under the modified numerical procedure of Tse, Li and Ng (2001).   
 
 

Table 2 

Monte Carlo versus Analytic Valuationa 

Weekly Monthly T K 
 

CDGFPb 

MCc DDDFPd MC DDGFP 

1 100 14.7931 13.053 13.0389 11.375 11.3608 

   12.977  11.096  

 90 6.0120 5.196 5.1801 4.461 4.4446 

   5.121  4.197  

 80 1.7709 1.494 1.4811 1.254 1.2414 

   1.451  1.119  

3 100 23.8741 21.993 21.9430 20.060 20.0089 

   21.915  19.890  

 90 13.4646 12.338 12.2866 11.194 11.1429 

   12.253  10.999  

 80 6.6443 6.054 6.0054 5.357 5.3966 

   5.981  5.295   

5 100 29.1716 27.130 27.1462 25.097 25.0915 

   27.097  25.021  

 90 18.0257 16.709 16.7063 15.395 15.3963 

   16.682  15.294  

 80 10.1373 9.340 9.3441 8.559 8.5645 

   9.326  8.487  

aOption parameters: F(0) = 100, r = 0.04, γ = 0, and σ=0.2.  
bCDGFP denotes the continuously sampled dynamic guaranteed fund protection values. These are calculated using the formula in 
Gerber and Pafumi (2000). 
cMC denotes the Monte Carlo results copied from Imai and Boyle (2001), Table 10. 
dDDGFP denotes the discretely sampled dynamic guaranteed fund protection values. These values are calculated using the formula in 
equation (11).  
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4.2 The Hedging Errors of Dynamic Guaranteed Funds 

 Based on Section 5 in Gerber and Pafumi (2000), we compute the amount invested in the 

risky reference portfolio RC and the amount invested in the risk free asset RFC at the fixed time 
point t. We calculate the continuous dynamic guaranteed fund hedging error HIC, which is the 
costs of risky and risk free assets this period subtracted by the income of previous period risky 
and risk free assets brought forward.15 In contrast, our formulation in equation (13) suggests an 
alternative synthetic portfolio under discrete sampling consisting of the risky reference portfolio 

RD and a risk-free reserve RFD to hedge against the uncertainty of the upgraded fund ).(~ tF  Over 
time, however, the patterns of fluctuations of the delta hedge ratios under the discrete and 
continuous hedging formulas are similar, i.e., the values rise and fall together (see Figure 2b). 
Under the continuous hedging formula in Gerber and Pafumi (2000), the delta hedge ratio will be 
zero whenever the upgraded fund price is at the guaranteed level.16 This is not the case under our 
discrete hedging formula whose hedge ratio is always above the ratio calculated under the 
continuous hedging formula in Gerber and Pafumi (2000). This zero hedge ratio effect creates 
wide gyration in the hedging amount of the risky asset (see Figure 2a) which can suddenly move 
between zero to values close to the upgraded fund prices.  Nonetheless, the total hedging error 

using our discrete hedging formulation Σt HID has less deviation from zero than using the 
continuous hedging formula of Gerber and Pafumi (2000) when both formulas are applied to 
calculate the rebalancing portfolios which are rebalanced only at the monthly reset dates.  
 
 Figure 3 plots the frequency distributions of the total hedging errors Σt HIC and Σt HID for γ 
= -0.05, 0, and 0.05. The frequency distributions are generated by 2000 Monte Carlo simulation 
runs of F(t) over the simulated year monitored at monthly instants under the same parameters as 
in Section 4.2. Each run creates one data point for Σt HID and Σt HIC . Figures 3a, 3c, and 3e are 
for Σt HIC with γ = -0.05, 0, and 0.05 respectively, whereas Figures 3b, 3d, and 3f are for Σt HID 
with γ = -0.05, 0, and 0.05 respectively. The means of the distributions in Figures 3a, 3c, 3e are: 
-74.2875, -50.6406, and -21.4703. Their standard deviations are: 38.5418, 32.4409, and 27.5801 
respectively. The means of the distributions in Figures 3b, 3d, 3f are: -50.6092, -34.8035, and 
-25.7475. Their standard deviations are: 30.4608, 21.6993, and 17.0885 respectively.  
 

 In all these cases, the variances of the frequency distributions of Σt HIC and their absolute 

                                                 
15 We assume zero hedging error in the initial period for delta dynamic hedging. Usually a synthetic hedging portfolio is created 
when the corresponding option is sold. Consequently, the initial option value covers the cost of synthetic portfolio creation. 
16 This usually occurs when the naked fund price is drifting down. If this continues, the guaranteed fund pays the non-stochastic 
guaranteed fund price K at maturity. This is the rationale for holding risk-free asset only before fund maturity when the upgraded fund 
price is at the guaranteed level K. 
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values of the means are in general higher than those of Σt HID. These indicate a reduced absolute 
expected total hedging error and its variability for discrete dynamic hedging when our analytic 
hedging formula instead of the Gerber and Pafumi (2001) formula is applied to calculate the 
rebalancing portfolio at the discrete hedging time points. Hence, the model misspecification of 
using continuous rather than discrete valuation and hedging formulas for discrete dynamic 
hedging is translated into a monetary outlay. Consequently, we investigate how a gamma 
adjustment of the hedge ratio on the riskless asset can cut down the absolute expected hedging 
errors under our discrete hedging formulation in equation (13). Such investigation is important 
because Figure 3 suggests that the guaranteed fund issuer to delta-hedge its fund will end up 
losing money most of the time regardless of using the continuous or discrete hedging formulas. 
Without an alternative hedging mechanism to adjust the expected total hedging error, establishing 
and running a dynamic guaranteed fund is an economically irrational and infeasible business even 
for a risk-neutral fund issuer.  
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Table 3 

Hedging Performance of the Synthetic Investment Fund 

Under Delta Hedging, and Gamma-adjusted Delta Hedginga 

Delta Hedging: e
g 0=θ  Adjusted Delta Hedging: 2

1=gθ  t F(t)b n(t)c )(~ tF d 

RFD
f RD

g HID
h RFD RD HID 

 100.0000  1.0000 100.0000 89.5188 21.8420 0 92.6411 18.7197 3.1223 

1/12 97.6962  1.0236 100.0000 88.3381 22.4790 0.8426 91.6107 19.2065 3.9753 

2/12 87.5762  1.1419 100.0000 87.0345 23.2097 0.8679 90.4768 19.7674 4.1514 

3/12 101.7688  1.1419 116.2060 27.7990 90.6322 -4.1351 30.8719 87.5593 -0.6813 

4/12 104.0691  1.1419 118.8326 19.7436 100.4986 0.3304 22.1611 98.0811 3.4135 

5/12 86.9640  1.1499 100.0000 82.0326 26.2688 -3.9203 86.1448 22.1566 -1.4947 

6/12 119.5328  1.1499 137.4509 1.2505 136.2560 -19.0933 1.4109 136.0956 -14.9674 

7/12 121.3264  1.1499 139.5134 0.4692 139.0618 0.0242 0.5190 139.0120 0.1851 

8/12 100.7214  1.1499 115.8196 11.9745 104.4259 -0.4848 13.5456 102.8548 -0.4348 

9/12 107.4321  1.1499 123.5363 1.6739 121.9184 -0.1945 1.8105 121.7819 1.3819 

10/12 104.9749  1.1499 120.7108 0.9639 119.7724 0.0731 0.9872 119.7491 0.2101 

11/12 98.2732  1.1499 113.0045 1.5867 111.4499 0.0566 1.5867 111.4499 0.0800 

1 117.9580  1.1499 135.6400 0 135.6400 -0.2740 0 135.6400 -0.2740 

Hedging Error: Σt HID =  -25.9072 Σt HID =  -1.3326 

aOption parameters: r = 0.04, σ = 0.2, γ = 0, K = 100,∆ = 1/12, and T = 1. 

bF(t) is the naked fund value at time t which follows a geometric Brownian motion, i.e., tUeFtF tU
,)0()( = ∼ φ(µ*t,σ2 t). This 

specific stochastic series is generated by Monte Carlo stochastic simulation. 

}.ts0max max{1,  n(t)
F(s)

sKec
γ

≥≥=  

).()()(~ tFtntF
d

=  

eColumns 5 to 7 are for θg = 0, whereas columns 8 to 10 are for θg =1/2. 
fRFD(t) denotes the amount invested in the riskless asset. 
gRD(t) denotes the amount invested in the risky asset F(t). 
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4.2.1 The Gamma-Adjusted Delta Hedging 

 The numerical figures in Table 3 are primarily calculated based on formulas in this article 
and the established formulas in the literature of finance. They are calculated under the same 
conditions and parameters as in Section 4.2. Moreover, all the pricing and hedging numerical 
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figures in Table 3 are derived based on one and the same arbitrarily chosen sample path of this 
risk-neutral naked fund price process. To understand the impact of the gamma hedging parameter 

on the hedging errors, we set θg=1/2 for gamma-adjusted delta hedging. Our purpose of gamma 
adjustment of the delta hedge ratio is to retrieve the protection value, which was not captured by 
the delta portfolio allocation during our dynamic hedging.17 
 
 In Table 3, we compare the hedging performance between the delta (θg = 0) hedging and the 

gamma-adjusted delta (θg =1/2) hedging of the dynamic guaranteed fund at monthly time instants 
over a simulated year. The dynamic path of the naked fund is generated by Monte Carlo 
simulation under the chosen set of parameters of interest rate, volatility, time-to-maturity, and the 
guaranteed level in Section 4.2. We calculate the number of units n(t) and the upgraded fund price 

)(~ tF  at time t by equation (3) where T ≥ t ≥ 0. According to Gerber and Pafumi (2000), a 
synthetic fund investment can be split into an investment in the reference portfolio RD and an 
investment in the risk free asset RFD. Our simulation run in Table 3 suggests that the total hedging 
error of this synthetic hedging portfolio Σt HID for γ = 0 under delta hedging is -25.9072 and 
under gamma-adjusted delta hedging is -1.3326. Thus, the gamma adjustment retrieves some of 
the protection value due to the guarantee jumps. After this adjustment, the effective delta for the 
riskless asset is lower because of the put characteristics of the gamma of the dynamic guaranteed 
fund. Figure 2b shows that the adjustment is more substantial when the upgraded fund price is at 
the guaranteed level at which the jump injection has the highest impact. Nonetheless, the effective 
delta still falls between 0 and 1 so that the amount of risk-free asset remains to be positive 
throughout the simulated year. Although the pattern of fluctuations between the delta and the 
effective delta hedge ratios are similar, the adjustment causes sometimes opposite movement of 

the hedging errors HID between the delta and gamma-adjusted delta hedging in Table 3 at various 
time points of the simulated-year, and hence a difference in their total hedging errors.    
 
 To investigate the distribution of the hedging errors, we simulate 2000 stochastic paths of 
the naked fund price under the same terms as in Table 3. Figures 4a, 4c, and 4e show the 
distributions of the total hedging errors which correspond to those in Figures 4b, 4d, and 4f. 
Figures 4b, 4d, and 4f compare on the same graph the root mean squared errors (RMSE) of the 
individual month hedging errors over the simulated year between the delta hedging and the 
gamma-adjusted delta hedging. The means in Figures 4a, 4c, 4e are -13.9315, 0.1758, and 5.5016, 
and their standard deviations are 31.5924, 22.0377, and 18.7941 respectively. Figures 4b, 4d, and 

                                                 
17 Note that we are not utilizing gamma hedging in the usual sense for minimizing the variability of hedging errors created by the 

curvature of the original pricing model, which will require a third asset with option feature to hedge the nonlinearity. 
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4f suggest that maximum RMSE of delta and of gamma-adjusted delta hedging are more or less 
the same.18 Consequently, the gamma-adjusted delta hedging retrieves the protection value 
without incurring additional costs of substantial borrowing, and additional variability of total and 
individual period hedging errors.19 

 

5. Conclusions 
 This paper investigates the analytic valuation and hedging strategy of discrete dynamic 
guaranteed fund. The pricing and hedging formulations are based on the expected payoff 
approach. Competition among insurance companies leads to many innovative product designs to 
offer their investors higher returns and protect them against the downside risk of these returns. In 
this respect, a dynamic guaranteed fund is ideal, and does not require active monitoring by the 
investor of the fund value to make prudent early-exercise and rollover decisions. While 
continuously sampled option formula offers an efficient reference for the value of an option, a 
discretely sampled option formula is the theoretically accurate formulation for practical 
applications.  
 
 A continuously sampled dynamic guaranteed fund formula is derived by Gerber and Pafumi 
(2000), and Gerber and Shiu (2003). Because a discrete dynamic guaranteed fund is practically 
more important, Imai and Boyle (2001) provide an approximate formula by extending the 
formulation of Broadie, Glasserman and Kou (1999). Since a discretely sampled option value 
could lead to a large variation from its continuous counterpart (see Kat and Verdonk (1995)), an 
analytic pricing formulation of the discrete dynamic guaranteed fund can provide an exact value 
of the fund and an understanding of its hedging performance. As the terminal value of a dynamic 
guaranteed fund is leveraged by its injections of incremental units to upgrade the naked fund 
value to remain above the guaranteed level over its life, the total value injection depends on the 
minimum value of the naked fund during its life. Therefore, we make use of the probability 
density function for discrete lookback options in AitSahlia and Lai (1998) to develop our pricing 
and hedging formulas for the discrete dynamic guaranteed fund. Our formulas are a result of the 
expected terminal value of the upgraded fund conditional on the possible occurrence of the 

                                                 
18 The maximum RMSE in Figures 4b, 4d, and 4f are 44.5006, 28.4116, 27.5696 respectively for delta hedging, and 40.4143, 29.1603, 

20.8104 respectively for gamma-adjusted delta hedging. 
19 When the naked fund surrogate is used to capture non-tradeability of the fund in place of the upgraded fund for our discrete 

dynamic hedging, the means corresponding to Figures 4a, 4c, 4e are -23.5906, -12.8082, and -9.8931 respectively. Since our hedging 

model is constructed based on the underlying upgraded fund price, the use of the tradeable naked fund surrogate for discrete dynamic 

hedging implies a model misspecification which manifests itself as a hedging error. 
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minimum value at various fixed discrete time instants.     
 
 Imai and Boyle (2001) provide a pricing interval for the discrete dynamic guaranteed fund. 
However, we are able to accurately calculate its analytic value contingent on the degree of 
accuracy of the required probability value input. Furthermore, based on our Monte Carlo 
simulation experiments, the expected total hedging error for a delta synthetic portfolio 
rebalancing strategy over a year for hedging the dynamic guaranteed fund at monthly monitoring 
time points is lower in value and higher in variance using the continuously sampled hedging 
formula of Gerber and Pafumi (2000) than using our discretely sampled hedging formulation. 
Nonetheless, the requirement of guarantee injections leads to negative expected total hedging 
error under delta dynamic hedging of the discrete dynamic guaranteed fund. By applying a 
gamma-adjusted hedge ratio to the riskless asset, a fund issuer can to a large extent retrieve the 
protection value of the guaranteed fund during its dynamic hedging. In addition, our paper shows 
that this gamma-adjusted delta hedging strategy based on a two-asset hedging portfolio of the 
naked fund and the riskless asset does not incur additional costs of substantial borrowing, and 
additional variability of hedging errors over the unadjusted delta hedging strategy.   
    
 In sum, this paper furthers our understanding of the value of dynamic guaranteed fund 
protection compared with other related forms of protection. It demonstrates how we can improve 
the hedging performance of a guaranteed fund through modifying the conventional delta by a 
gamma factor.  
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Appendix 

A.1 Proof of Proposition 1.  
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where )( mim  M  | UUf =  is the probability density function of mU conditional on the 
occurrence of minimum mM  at iU , and )( mi  M Ug =  is the normal probability density 

function of iU  under Brownian motion. Since 00   U =  and ,  eEe mU*-rT 1][ = by applying the 
joint probability results in AitSahlia and Lai (1998), the value of the discrete guaranteed fund can 
therefore be written as 
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 By applying the results of Lemma 1, we obtain 

}

~

)1~0max(1){0())0((~

1
1 11

1
2 22

2
1)1( )()1(

1

2
1)1( )()1(

1

ν

'Z-ν-d ν-d

ν

-dm

ν
m- ν

ν

'Z-ν-d ν-d

ν

-d

m- ν

m

ν

-r ν

m

deCβ-

deCβKe 

β-K, F ,TFA

ννν
*

ννν
*

y

y

yy

yy

−

−

∫ ∫∫∑

∫ ∫∫∑
−

∞− ∞−∞−
=

−

∞− ∞−∞−
=

∆+

+=

L

L  

Q.E.D. 
 

A.2 Proof of Proposition 2. 

 The proof will be furnished upon request. 


