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Abstract

We use time-series properties of changes in share turnover with GMM tests to examine
the number of factors that drive changes in conditional expected time-varying volume.  In
the three ten-year subperiods between 1966 and 1996, we detect no more than two
factors.  These findings support the hypothesis that changes in conditional time-varying
expected volume can be represented parsimoniously as a function of a few factors.
However, whether we detect one factor (as Tkac (1999) suggests) or two factors (as Lo
and Wang (1998) indicates) depends on which sample period we use, on whether we sort
portfolios by turnover or returns betas, and on whether we measure those betas relative to
the equal- or the value-weighted index.
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Time-Varying Conditional Volume and Asset Pricing Relations

1. Introduction

Recent studies by Lo and Wang (1998) and Tkac (1999) develop and test

implications for share turnover of asset pricing models.  Lo and Wang focus on

separation theorems.  In particular, they show that two-fund separation implies turnover

will be identical for all securities while (K+1)-fund separation implies turnover will

satisfy an approximately linear K-factor structure. Empirically, Lo and Wang find that

two principal components explain approximately 90 percent of the variation in turnover

of portfolios ranked by turnover betas over each of six five-year periods. The three-fund

separation these results suggest appears robust to changes in the index against which

turnover betas are measured and to the use of differences in or levels of turnover to

measure betas.  These findings supplement returns-based tests in shedding light on which,

if any, of the return generating processes implied by asset pricing models conform most

closely to empirical predictions.   The stability of the findings also suggests current price

and volume relations may contain information about future price and volume behavior.

Tkac (1999) provides a theoretical rebalancing benchmark that connects trading

of individual stocks to market-wide volume. Like Lo and Wang's (1998) two-fund

separation, Tkac's result implies turnover will be identical for all securities if portfolio

rebalancing is the sole motive for trade.  To accommodate other motives, Tkac examines

the idiosyncratic influences of institutional ownership, option availability, relative firm

size, and membership in the S&P 500.   Her findings support the hypotheses that both

market-wide and firm-specific influences affect volume and that market adjustments for

volume are important in filtering out anomalous trading.
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On the surface, Lo and Wang's (1998) finding that two factors explain the cross-

sectional variation in turnover seems to imply that Tkac's (1999) single-factor attempt to

extricate market influences from volume may overstate the influence of idiosyncratic

characteristics.  On the other hand, Tkac's single-factor approach, if correct, calls Lo and

Wang's second factor and three-fund separation result into question.

Of course, Lo and Wang's (1998) hypotheses, empirical methods, and data differ

from those of Tkac (1999). To illustrate, Lo and Wang define turnover as the fraction of

shares traded, while Tkac uses relative dollar volume. Lo and Wang use only all ordinary

NYSE/AMEX common shares, while Tkac only uses all stocks in CRSP deciles 7

through 10.  Lo and Wang's sample extends from July 1962 to December 1996, while

Tkac's analysis extends from January 1988 through December 1991. Lo and Wang

examine turnover across weekly intervals, while Tkac uses monthly observations.  Such

differences may invalidate direct comparisons between findings in Lo and Wang and

Tkac.  However, important empirical questions remain about the number of factors that

should be used in tests such as Tkac's and about the number of separating portfolios that

turnover data reveal.

This paper addresses some of those questions by using the time-series behavior of

changes in turnover (as defined by Lo and Wang (1998)) to examine cross-sectional

turnover models. Rouwenhorst (1999) demonstrates that turnover is positively related to

the same attributes that drive cross-sectional differences in average returns. Other studies

[e.g., Blume, Easley and O’Hara (1994), Conrad, Hameed, and Niden (1994) and

Gervais, Kaniel, and Mingelgrin (1998)] suggest that volume is an important predictor of

equity returns.   Given these findings and those in numerous other studies [e.g., Gibbons
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and Ferson (1985), Campbell (1987), Campbell and Hamao (1992), and Chang and

Huang (1990)] that support time-varying conditional expected returns, we hypothesize

that conditional expected changes in asset turnover could be time varying also.  If that

hypothesis is correct, Lo and Wang's K-fund separation theorem should be tested under

the premise of time-varying turnover.

Accordingly, we first examine whether changes in asset turnover are partially

predictable.  We document of set of instruments that are useful in predicting changes in

expected monthly stock turnover in US markets.  Then, in the spirit of Gibbons and

Ferson (1985) and Campbell (1987), we use GMM (Generalized Method of Moments)

tests to infer the number of latent variables that drive changes in conditional expected

turnover.  If three-fund separation holds, as Lo and Wang (1998) suggest, we should

reject a single-latent-variable model, but we should fail to reject a two-latent-variable

model.

We also examine the consistency in the number of factors detected with volume

and return data. If three-fund separation holds, we expect two latent variables to emerge

with turnover and returns data.  If inferences about future price and volume behavior are

to be valid, we also expect the relations to be robust to whether portfolios are sorted by

turnover or return betas ("need qualification" I am not sure what you mean here), [We

can leave as it is. Originally, I was worried that in the GMM tests, we assume all

portfolio beta coefficients are not time-varying. For turnover tests, if we sort portfolio be

return beta, we may violate the assumption that the portfolio has constant turnover beta

over the testing period. Our results do not show that this is an important concern. Let's
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leave it as it is.]  to the index against which betas are measured, and to the length of the

test period.

Like Lo and Wang (1998), we use data from 1966 through 1996.  Like Tkac

(1999), we use monthly observations. When portfolios are sorted by turnover betas, we

find that the The number of factors driving conditional expected changes in turnover has

been consistenly less than two. The evidence renders strong support for Separation

theorems in general. In addition to the sampling periods, the variation of the number of

factors is also related   volume and returns in our analysis is small but unstable.  It is also

sensitive to the weighting scheme. whether turnover betas are measured relative to the

equal- or the value-weighted index.  For the equal-weighted portfolios index, we find one

latent variable in the first (1966-1976) and second subperiods (1977-1986), but two latent

variables in the third (1987-1996).  For the value-weighted portfolios index, one, two,

and one factor(s) emerge(s) in the first, second, and third subperiods, respectively. We

obtain qualitatively the same results when turnover portfolios are sorted by return betas.

For equally-weighted return portfolios, again, the number of hedge-portfolios

identified in all three sub-periods has been consistently less than two. The results hold for

both turnover-beta and return-beta sorted portfolios. In particular, for equally-weighted

turnover-beta sorted portfolios, only one latent variable is identified for both turnover

and return portfolios for the 1966-1976 and 1977-1986 subperiods. The joint results offer

strong support for the two-fund separation theorem. Though the numbers of factors

identified from turnover and return portfolios vary by one in the 1987-1996 sub-period,

the results generally support a three-fund separation theorem.
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We furnish evidence that the above results for turnover portfolios are insensitive

to weighting scheme while return portfolios are. When turnover portfolios are sorted

either by turnover-beta or return-beta, the number of identified latent variables has been

consistently less than two. The results are consistent with Lo and Wang (1998) in some

subperiods and with Tkac (1999) in others, depending on the index used to measure

turnover and/or return betas. However, for the 1987-1996 subperiod, we have indetified

three (four) common factors for turnover-beta (return-beta) sorted value-weighted return

portfolios while there is only one common factor drove changes in asset turnover.

The rest of the paper proceeds as follows.  Section 2 motivates our methods.

Section 3 discusses their technical details.  Sections 4 and 5 present our data and

empirical results, and Section 6 concludes.

Thus, the only period in which the choice of index does not influence the results is

between 1966 and 1976.  Similar subperiod results hold for the number of factors driving

conditional expected returns.  On balance, therefore, our results are consistent with Lo

and Wang (1998) in some subperiods and with Tkac (1999) in others, depending on the

index used to measure turnover and/or return betas. (Well, see how this fits in after

revision)

The rest of the paper proceeds as follows.  Section 2 motivates our methods.

Section 3 discusses their technical details.  Sections 4 and 5 present our data and

empirical results, and Section 6 concludes.

2.  Methodology and Motivation for Time Series Methods
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Asset pricing theories suggest that common movements characterize expected

asset returns.  Single-period models, such as the CAPM (Capital Asset Pricing Model) of

Sharpe (1964) and the APT (Arbitrage Pricing Model) of Ross (1976), provide

parsimonious representations in terms of factors of all excess returns.  Initial tests of asset

pricing relations use return data only. Like Lo and Wang (1998), initial researchers focus

on cross-sectional relations. Black, Jensen, and Scholes (1972), Fama and MacBeth

(1973), Gibbons (1982), and Roll and Ross (1980) provide early examples of this

research. The first three studies test the one-factor CAPM; the fourth tests a multi-factor

APT.

Like Lo and Wang, Roll and Ross use factor analysis. Several authors use this

approach to discover the number of priced factors. Other authors attempt not only to

count, but also to identify and interpret the factors. Because identification is difficult with

factor analysis, later studies pre-specify multi-factor models in which the number and

identity of the factors are fixed by researcher choice. Some of these studies [e.g., Chen,

Roll, and Ross (1986)] use macroeconomic factors, while others [e.g., Fama and French

(1992)] use factors based on firm-specific attributes. Though pre-specification solves the

identity problem, it can not guarantee that relevant factors have not been omitted. Nor are

included factors always tied tightly to equilibrium models of risk. Daniel and Titman

(1997) show, for example, that returns on stocks are insensitive to their betas on market-

to-book and size factor portfolios even though Fama and French (1992) argue that

market-to-book ratios and market capitalization are important sources of security risk.

Hence, interpretation remains difficult even when factors are pre-specified.
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Besides the challenges mentioned above, the cross-sectional tests all presuppose

that expected returns remain constant over the period of analysis.  To circumvent this

assumption, researchers have turned to time series tests. Early papers from this genre

include Hansen and Hodrick (1983) and Gibbons and Ferson (1985). Gibbons and Ferson

(p. 218) motivate their analysis by arguing that “ . . . the underlying theory [of asset

pricing] refers to moments conditional on available information.   While these

conditional expectations may change over time, empirical studies of asset pricing have

not utilized this time series behavior when testing cross-sectional models of returns.

(Emphasis added)” Gibbons and Ferson, and later Campbell (1987), show that under

certain conditions latent variables tests based on predictable time-varying conditional

expected returns can be construed as tests of general intertemporal asset pricing models.

Researchers have used latent-variables models to test the number of factors

generating returns in the US stock [e.g., Gibbons and Ferson (1985) and Campbell

(1987)], and bond [e.g., Chang and Huang (1990)] markets, the world price of covariance

risk [e.g., Harvey (1991)], the integration of US and Japanese markets [e.g., Campbell

and Hamao (1992)], and the regional integration of Asian equity markets [e.g., Chang,

Pinegar, and Ravichandran (1994)].  Besides flexibility, these tests also nicely balance

subjectivity and objectivity.  The researcher selects the information variables that predict

time varying expected returns, but the tests themselves determine the number of factors.

The greater congruity between the time series properties of returns and the

methods used to test asset pricing is a nice feature of the latent variable approach. Despite

this improvement, Elton (1999) argues against the use of realized returns per se.

Specifically, he states (p. 1200) that  “developing better measures of expected return and
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alternative ways of testing asset pricing theories that do not require using realized returns

have a much higher payoff than … tests that continue to rely on realized returns as a

proxy for expected returns.”

Thus, Lo and Wang (1998) and Tkac (1999) open new vistas with their analyses

of turnover in an asset-pricing framework. Rouwenhorst (1999) also demonstrates that

turnover in positively related to the same attributes that drive the cross-sectional

differences in average returns. Other studies [e.g., Conrad, Hameed, and Niden (1994)

and Gervais, Kaniel, and Mingelgrin (1998)] suggest that volume is an important

predictor of equity returns.  However, none of these studies considers the time-series

properties of volume in discerning the number of factors that generate returns. If equity

returns are time varying and can be predicted by volume, volume itself should vary

through time in a predictable fashion.   We confirm this assertion below and then use the

predictive relations to discern the number of factors suggested by changes in volume.

3. Latent Variables Tests for Asset Turnover

Lo and Wang (1998) show that when the risk-free security, the market portfolio,

and K-1 constant hedging portfolios are the relevant separating funds, the turnover of

stock j at time t can be approximated by a linear K-factor model of the following form:

                              K
τjt = F1t  + ∑    Sjk Fkt   +   µjt            j = 1,…,J (1)

                             k=2

in which F1t is turnover for the market portfolio from time t-1 to time t; Fkt  (for k = 2, …,

K) are factors that depend on the turnover of the corresponding hedged portfolio k;  and

Sjk is the number of shares of stock j held by fund k.   Lo and Wang further demonstrate
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that the approximation error of Equation (1) will be small when the amount of trading in

the hedging portfolios is small.  Note that Equation (1) can also be cast in terms of the

change in turnover  ()τjt ), and for reasons discussed below, using changes in turnover is

better than using levels.  Thus, we rewrite Equation (1) as

                                                    K

)τjt = )F1t  + ∑    Sjk )Fkt   +   µjt            j = 1,…,J (1')
                                  k=2

where )τjt , )F1t  , and )Fkt  refer, respectively, to the change in turnover of stock j, the

market portfolio, and the hedged portfolio k (k=2, …, K) at time t.

Suppose that )τjt is predictable using the information contained in Zt-1 , where Zt-1

is an L X 1 vector of  information variables : (z1t-1 ,…., zLt-1 )′.  We wish to test whether

the time varying expected change in turnover is driven by a small number of

unobservable latent variables.  With Equation (1'), the number of latent variables

identified should equal K. To proceed with the latent variables and GMM procedures for

identifying the number of relevant factors that drive equation (1'), we express the

predictability or the conditional expectation of )τjt given Zt-1 as :

E()τjt|Zt-1 ) = αj ′Zt-1 (2)

Where E(*|*) = conditional expectation operator,

)τjt = the change in turnover volume of security j at time t, and

αj = ( αj1,  αj2 ,……., αjL)′ = (L X 1) vector of coefficients.

Conditional expectations are assumed to be linear in the elements of Zt-1. Rejection of the

hypothesis that αjl = 0  (for l = 1,.  . ,L) suggests the existence of information variables

that forecast expected changes in turnover.  We use the multifactor version of (1) to
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examine if time-varying changes in turnover are governed by common factors.  Within

this framework, and with (2), equation (1') becomes:

                                       K                  L

E()τjt | Zt-1 )  =  ∑   βjk ( ∑   αkl Zlt-1) (3)
                                       k=1             l=1

The coefficients αkl are projection coefficients of expected changes in turnover of hedge

portfolios onto the information variables in the vector Zt-1 and βjk  is the constant

regression coefficient corresponding to each factor k regarding changes in turnover for

stock j in (1).  Following Hansen and Hodrick (1983), we express the system of J

regression equations describing J changes in turnover as:

)τt =  AZt-1  +  µt (4)

where  )τt = ()τ1t , )τ2t ,…….., )τJt )′

A = (J X L) matrix of coefficients with typical elements δjl  and

µt = (µ1t , µ2t , ……, µJt )′

Equation (4) implies the following testable restrictions,

        K
δjl = ∑   βjk αkl (5)

                    k=1

where βjk and αkl  are not directly observable, since changes in turnover of hedge

portfolios are assumed to be unobservable.  Hence, we standardize by setting βjk  = 1 for j

= k and j, k ≤ K; and βjk  = 0 for j ≠ k and j, k ≤ K.  Thus, there are JK – K2 free β’s and

LK free α’s.  There are a total of JL coefficients in the matrix, A, resulting in (J-K)(L-K)
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overidentifying restrictions on the data.  Technically, the model places overidentifying

restrictions on the data if the number of latent variables K is strictly less than the number

of portfolios J and the number of information variables L.  In addition, practical

considerations require that K be a small number so that a parsimonious representation of

changes in turnover is feasible.  A natural progression of the tests is to start with the

single latent variable model and move up to a higher number of variables if the lower

dimensions are rejected.

In testing the predictability of changes in turnover volume by information

variables, we use the heteroskedasticity-consistent covariance estimators proposed by

White (1980) to adjust for conditional heteroskedasticity.  To estimate and test the latent

variable model (equation (4)), we use Hansen’s (1982) and Hansen and Singleton‘s

(1982) generalized method of moments (GMM) nonlinear estimation technique that

allows for conditional heteroskedasticity of an unknown nature.

 We define a  (JL X 1) vector function,

f ( τt , Zt-1 , δ) = µt ⊗ Zt-1 (6)

where  ⊗ denotes the Kronecker product.  We further define a vector gT(δ) containing the

sample estimate for the mean corresponding to the elements of the vector function in (6)

as :

                               T

gT(δ) = T-1 ∑ f ()τt , Zt-1 , δ) (7)
                              t=1

which is evaluated at δ = δ0 .  The GMM forms a vector of the orthogonality conditions,

gT(δ), and the parameter vector δ is chosen to make the orthogonality conditions as close

to zero as possible by minimizing the quadratic form
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LT(δ) = gT(δ)′WT gT(δ) (8)

Where WT   is a (JL X JL) symmetric, positive definite weighting matrix that defines the

metric used to make g close to zero.   Hansen (1982) provides the conditions under which

minimization of LT(δ) yields δT  with the smallest asymptotic covariance matrix when

W0 = E[f(τt , Zt-1 , δ) f(τt , Zt-1 , δ)′]-1 . (9)

Hansen (1982) shows that T times the minimized value of the quadratic form, LT(δ), is

asymptotically distributed as χ2  with degrees of freedom  equal to (J-K)(L-K).  This χ2

statistic regarding the overidentifying restrictions provides a goodness of fit test for

equation (5).

To implement the estimation procedure, we use a two-stage method suggested by

Hansen and Singleton (1982).  In the first stage, an arbitrary or suboptimal weighting

matrix WT is used to minimize LT(δ) to get an initial consistent estimate of δT .  These δT

estimates are then used to construct the optimal weighting matrix WT
*.  In the second

stage, the optimal WT
* is used to minimize (8) to obtain a second-stage estimate of δT

*.

Although a two-stage procedure is asymptotically efficient, Ferson and Foerster (1994)

show that the finite sample performance of GMM is improved when further iterations are

conducted to minimize the dependence of the estimator on the initial weighting matrix.

Hence, if necessary, we extend the two-stage process.

4. Data Description

Panels A and B of Table 1 summarize turnover and return data for nine double-sorted

portfolios of AMEX/NYSE stocks from the Center for Research in Securities Prices

(CRSP) data base. For each month from January 1962 through December 1996, we sort
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securities into three size-ranked portfolios according to their previous year-end market

capitalization. 1  Each size portfolio is then further partitioned into three portfolios

according to the turnover betas of its component securities.  The turnover beta of security

j (βj) for month t is estimated using data for the previous 36 months (i.e. from t-36 to t-1)

according to equation (10):

τjt = αj  + βj   τmt  +  εjt (10)

in which τjt (τmt) is the turnover of security j (the market portfolio) at time t.  The double

sorting process produces nine size-turnover-beta-sorted portfolios. We measure turnover

betas relative to an equal-weighted and a value-weighted index of all AMEX/NYSE

stocks, but we report results in tables only for the equal-weighted index.

Portfolios 1 through 3, 4 through 6, and 7 through 9 contain the small-, mid-, and

large-cap firms in our sample.  Within each size-sorted third, turnover betas increase with

the portfolio number.  For the small-cap portfolios, for example, firms in portfolio1 have

the lowest turnover betas, firms in portfolio 2 have the next lowest betas, and firms in

portfolio 3 have the highest betas.

Turnover betas range from .539 for portfolio 1 to 1.291 for portfolio 9.  Though

small firms have lower turnover betas, on average, the relation is not monotonic.  The

mean beta for portfolio 3 (.915) is higher than the mean betas for portfolios 4 (.632) and 5

(.876), and the mean beta for portfolio 6 (1.236) is higher than the mean betas for

portfolios 7 (.798) and 8 (.933).    Within size categories, high-beta stocks do not always

                                                       
1   Securities with an initial public offering one year are included in the sample the next year.  Because the
CRSP  tapes occasionally contain errors, with daily turnover rates exceeding 1,000% in some cases, we
also exclude securities with daily turnover exceeding 50%.   This threshold is arbitrary, but CRSP data
providers confirm that there are errors in some of the volume estimates.  Because we unsure whether all
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have the largest mean capitalization.  However, the low-, medium-, and high-beta

estimates for stocks in the small-cap portfolios are all lower than the corresponding

estimates for stocks in the mid-cap portfolios which, in turn, are smaller than the

corresponding estimates for stocks in the large-cap portfolios.  Mean turnover estimates

exhibit patterns similar to, but not as pronounced as, the patterns exhibited by the

turnover betas.    Within size groups mean turnover increases as turnover betas increase,

but across groups the high-beta large-cap stocks in portfolio 9 have a lower mean

turnover (.0555) than the high-beta mid-cap stocks in portfolio 6 (.0651).

As expected, autocorrelation coefficients are high for turnover even with a 12-

month lag.  They also tend to be higher for large-cap stocks at all lags.  The persistence in

turnover suggests some form of nonstationarity.  To avoid spurious predictive relations

and to perform more meaningful statistical inference, we first difference turnover in our

tests below. More sophisticated methods [e.g., Gallant, Rossi, and Tauchen (1994)] are

available for detrending the data, but Lo and Wang (1998) show that there are costs to

each approach.  Thus, we employ a simple first difference to facilitate interpretation.

Panel B summarizes return data for the same portfolios.  Instead of turnover betas,

the panel reports return betas, but the second portfolio sort is still based on turnover

betas. Within each size-sorted third of the sample, return betas increase with turnover

betas.  However, across all nine portfolios the correlation (.28) between mean turnover

betas in panel A and mean return betas in panel B is not strong.   Thus, examining the

sensitivity of our results to sorting criteria may be important.  [come back here?]

                                                                                                                                                                    
errors have been corrected, we use the 50% cutoff rate.  Lo and Wang (1998) also had to use a filter in their
analysis.
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Compared with the autocorrelation coefficients for turnover, the coefficients for

returns are small.  Nevertheless, portfolios 1 through 6 all have significant one-month

lags. Potential causes of this (cross-)autocorrelation are discussed by Lo and MacKinlay

(1990), McQueen, Pinegar, and Thorley (1996), and others at length. The significant 12-

month lag for portfolios 1 through 3 is consistent with the January effect discussed by

Rozeff and Kinney (1976), Reinganum (1981), Keim (1983), and others.  Holding firm

size constant, neither the one-month lag, nor the 12-month lag appears to change

significantly with changes in the turnover betas.

Table 2 reports summary statistics for the instrumental variables we use to predict

changes in turnover.  They include the lagged first difference in turnover for the market

as a whole (DMAVTO), the lagged cross-sectional dispersion of turnover for the market

as a whole (MDPTO), the lagged average market return (MAVRE), the lagged dispersion

in returns for the market (MDPRE), and a January dummy variable (DJAN). The

dispersion estimates for returns and turnover are cross-sectional standard deviations for

the respective variables.  Except DJAN, most of these instruments are significantly

positively correlated with each other.  Thus, to some extent, they may measure the same

thing.  However, even the highest correlation (0.421, between MAVRE and MDPRE)

indicates that collinearity problems should be small.  Thus, we now proceed to predict

changes in time-varying turnover.

5. Empirical Results

5.1 Base Case

We begin our analysis in this section by presenting results for tests of the number of

factors driving conditional expected changes in turnover and returns when portfolios are
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formed according to procedures outlined above.  Then, we present robustness tests of the

base case results.  Our first step is to establish predictive relations between the change in

turnover and our instrumental variables.  Table 3 reports results of the following

regression for each portfolio j = 1,…, 9

(11)                                              ,*5,*4,             

*3,*2,*1,0,,

1

111

tjDJANjMDPREj

MAVREjMDPTOjDMAVTOjjtj

tt

ttt

εαα

αααατ

++

++++=∆

−

−−−

in which )ϑj,t  [Plaese check notations here]is a equal-weighted average of the change in

turnover at time t for portfolio j, and the instrumental variables are as defined above.

Coefficients in (11) that are significant at the .05 (.10) level are marked with double

(single) asterisk.  The coefficients on DMAVTOt-1 and MAVREt-1 are significant at the

.05 level for each of the nine portfolios.  The coefficients on DJAN t are significant for all

but portfolio 3, and the coefficients on MDPTO t-1 and MDPRE t-1 are significant for at

least five of the nine portfolios. MDPTO t-1 has more predictive power for small-cap

firms, while  MDPRE t-1 has more predictive power for large-cap firms. In general, the

change in turnover is more predictable for large-cap than for small-cap firms.  However,

the adjusted R2's in Table 3 (.105 to .272) clearly show that changes in turnover are

predictable for all nine portfolios.

Given this evidence of predictability, we now use Hansen’s (1982) and Hansen

and Singleton‘s (1982) generalized method of moments (GMM) nonlinear estimation

technique to determine the number of factors driving time-varying changes in conditional

expected turnover. We focus on results for the three subperiods from March 1966 through

December 1976, from January 1977 through December 1986, and from January 1987

through December 1996.  The reasons for our subperiod analysis are twofold.  First, the
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nature of the market has changed dramatically during our sample period. Many new

securities have been introduced, index funds have become popular, and portfolio

insurance and dynamic trading strategies have become available.  Second, Lo and Wang

(1998) also focus on subperiods. However, they use weekly observations over five-year

subperiods; whereas, we use monthly observations over 10-year subperiods

Results of our subperiod analysis are reported in Table 4.  In the first and second

subperiods, we fail to reject the hypothesis that a single latent variable drives changes in

conditional expected turnover.  In the third subperiod, we reject a one-factor model, but

fail to reject a two-factor model. Thus, our first two subperiods are consistent with Tkac

(1999), while our third subperiod is consistent with Lo and Wang (1998).

Differences in the number of factors revealed by turnover data in our tests vis-à-

vis those of Lo and Wang illustrate the sensitivity of the results to methodological

changes. They may also illustrate difficulties in interpretation.  For example, Lo and

Wang's first factor in their Table 8 explains between 77.2% and 82.6% of the variation in

changes in weekly turnover across sample periods.  The second component explains

between 5.0% and 8.0%.  If the second component is economically significant, however,

the third may be also because it explains between 3.0% and 4.8% of the variation in first

differences in weekly turnover.  In three of the six subperiods, the third component is at

least 70% as large as the second.  The interpretation problem arises, of course, because no

rule defines when one factor is economically significant and another is not.  Nor can

statistical significance resolve the issue in Lo and Wang's analysis because the

asymptotic standard errors of the standardized principal components are computed under
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the assumption of IID Gaussian data.  As Lo and Wang (p. 34) warn, this assumption is

"hardly appropriate for weekly US stock returns and even less convincing for turnover."

What statistical properties conditional changes in turnover exhibit is unknown.

However, Table 3 presents strong evidence that changes in turnover vary over time in a

predictable manner, and Table 4 shows that the number of factors emerging from the

predictive relations is unstable across subperiods.  Subject to the constraint that our tests

are appropriate for the distributional properties of conditional changes in turnover, they

reveal one factor in the first and second subperiods and two factors in the third.  In

general, then, the results in Table 4 are consistent with the spirit of Lo and Wang (1998)

and Tkac (1999) in that they suggest either two- or three-fund separation.  We now

examine whether similar findings hold when we use return vis-à-vis turnover data.

As before, the first step is to predict time-varying returns for our equal-weighted

portfolios.   Many authors (e.g., Campbell (1987), Campbell and Hamao (1992), and

Chang and Huang (1990)) demonstrate that stock and bond returns can be predicted using

various instruments.  Consequently, we use those instruments shown to be successful in

previous studies in the following regression

)12(                             **                         

***

,5,14,

13,12,11,0,,

tjtjtj

tjtjtjjtj

DJANDMAVTO

RSRLTMSTDPRPRET

εαα

αααα

++

++++=

−

−−−

The last two variables in (12), DMAVTO t-1 and DJAN t, were also used to predict

changes in turnover.  Besides those variables, regression (12) includes the lagged

dividend yield on the market (DPRt-1), the lagged spread between returns on the 20 year

government bond and the 30-day T-bill (LTMSTt-1), and the lagged relative short rate
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(RSRt-1), i.e., the 30-day T-bill total return minus the moving average total return on 30-

day T-bills over the last year.

Though the instruments in (12) differ from those in (11), we use exactly the same

stocks, portfolio weights, and sorting procedures to predict returns as we used to predict

changes in turnover. Nevertheless, adjusted R2's in Table 5 (.024 to .182) are noticeably

lower than adjusted R2's in Table 3 (.105 to .272). In general, these adjusted R2's indicate

that time-varying turnover is more predictable for large-cap firms; whereas, time-varying

returns are more predictable for small-cap firms. Nevertheless, returns are predictable for

all portfolios in Table 5.  The coefficients on DJAN t are significant at the .05 level for all

nine portfolios and the coefficients on LTMST t-1 are significant at the .10 level for seven

portfolios.

Table 6 reports GMM tests of the number of latent variables driving time-varying

conditional expected returns.  In each subperiod, we fail to reject the hypothesis that only

one latent variable is present.  In Table 4, only one factor is present in the first and the

second subperiods, but two factors emerge in the third. Therefore, the results generally

support a parsimonious representation of factors common to all expected returns or to all

expected changes in turnover. In the first and second periods, both time-varying expected

returns and time-varying expected changes in turnover are driven by only one factor.

Therefore, both results support the two-fund separation theorem.  In the third subperiod,

the number of factors driving conditional expected changes in volume (2) exceeds the

number of factors driving conditional expected returns (1) by one, but both numbers are

small.
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Figure 1 summarizes Tables 4 and 6 graphically and shows the similarity in the

numbers of factors across subperiods with conditional changes in expected turnover and

conditional expected returns. As Elton (1999) predicted, using data other than realized

returns can enrich our understanding of asset pricing theorems.  Interestingly, however,

the number of factors detected with time-varying expected realized returns is generally

consistent with the number of factors detected with time-varying expceted changes in

turnover.  Therefore, we now examine the robustness of this result.

5.2 Robustness Tests

Our first robustness test repeats the analysis above with a different sorting

procedure.  Specifically, after sorting by size, we sort by return rather than turnover betas.

As before, we measure betas relative to an equal-weighted index of AMEX/NYSE stocks.

Panel A of Table 7 contains results for conditional changes in expected turnover; panel B

reports results for conditional expected returns.  Figure 2 summarizes the results of both

panels.

Only one latent variable drives conditional changes in expected turnover across

all subperiods in Table 7.  However, two latent variables emerge in the second and third

subperiods for conditional expected returns.  Relative to the base case, then, the number

of factors driving conditional changes in expected turnover declines by one in the last

subperiod when portfolios are sorted by return, rather than turnover, betas.  The number

of factors driving conditional expected returns, on the other hand, increases by one in the

second and third subperiods.  Except for the last subperiod, the results based on
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conditional changes in expected turnover and conditional expected returns are consistent

with two- or three-fund separation.

Our second robustness test uses the original sorting procedure, but measures

turnover betas relative to the value-weighted AMEX/NYSE index. For brevity, we

summarize the results in Figure 3 without reporting detailed information in a separate

table. Compared with the base case, Figure 3 indicates one more (fewer) factor in the

second (third) subperiod for changes in conditional expected turnover.   It indicates two

more factors for the third subperiod with conditional expected returns.  As before, the

only subperiod that produces results that are inconsistent with two- or three-fund

separation is the third subperiod.

Our final subperiod robustness test combines the alterations in the previous two

sensitivity analyses. Thus, we sort by return betas measured against the value-weighted

AMEX/NYSE index.  The results, summarized in Figure 4, show that the numbers of

latent variables emerging with conditional changes in expected turnover (1, 2, 1) are the

same as in Figure 3.  However, the numbers of factors driving conditional expected

returns are (1, 2, 4) increase by one in the second and third subperiods.  In general, the

number of factors detected in tests with conditional expected returns is more sensitive to

changes in the weighting and/or sorting scheme than is the number of factors detected

with conditional changes in expected turnover.   The relative stability with conditional

changes in expected turnover is consistent with the findings of Lo and Wang (1998).

[Suggesting to eliminate this section. Note that even in early Fama and Macbeth

(1973) paper, CAPM is tested by sub-period. It is also true for Chen, Roll and Ross

(1986). This is also why Lo and Wang (1998) use sub period] Our final robustness test
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examines the number of factors that are detected when the sample is not partitioned into

10-year subperiods. Lo and Wang (1998) do not present total sample results.  Therefore,

we do not know the number of factors their analysis would reveal over the total sample

period.  Nevertheless, we perform total sample tests for completeness' sake. In those tests,

we reject even a four-factor model with both turnover and returns data when turnover

betas are measured relative to the equal-weighted index.  By definition, our analysis

includes (J-K)(L-K) overidentifying restrictions, for J (= 9) portfolios and L (= 6)

instrumental variables.  Thus, our rejection of a four-factor model raises questions about

the premise that asset-pricing relations can be expressed parsimoniously. This finding

supports Bessembinder, Chan, and Seguin (1996) and suggests that the more disparate the

firms and the longer the time period, the greater the likelihood that volume will change

idiosyncratically and/or that the number of factors that drive conditional changes in

expected turnover will change intertemporally.  Hence, the chance that factor model tests

will detect a small number of common factors is reduced.

Despite these differences, our results are broadly consistent with those assumed

and/or reported by Tkac (1999) and Lo and Wang (1998) in that we do detect a small

number of factors during each of the subperiods.  This finding supports the hypothesis

that common factors drive volume.  However, whether there is one factor (as Tkac

assumes) or two factors (as Lo and Wang's analysis indicates) depends on which sample

period we use, on whether we use turnover or returns betas, and on whether we measure

those betas relative to the equal- or the value-weighted index.
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6. Conclusion

We use time-series properties of changes in share turnover with GMM tests to

examine the number of factors that drive changes in conditional expected time-varying

volume.  In the three ten-year subperiods between 1966 and 1996, our tests detect no

more than two factors.  These findings support recent evidence in Lo and Wang (1998)

and Tkac (1999). Similar results obtain when we use the identical portfolios and sorting

methods to detect the number of factors driving conditional expected returns.  However,

the number of factors emerging from our tests is sensitive to whether we sort by turnover

or returns betas and to whether we measure those betas relative to an equal- or a value-

weighted index.  Despite these sensitivities, our evidence is generally consistent with the

hypothesis that changes in conditional expected turnover and conditional expected returns

can be expressed parsimoniously as a function of a few latent variables.
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Figure 1
Differences in the Number of Factors Driving Conditional Changes in Expected Turnover and Returns for 

Turnover-Beta-Sorted Portfolios when Betas are Measured Relative to an Equal-Weighted Index
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Figure 2
Differences in the Number of Factors Driving Conditional Changes in Expected Turnover and Returns for 

Returns-Beta-Sorted Portfolios when Betas are Measured Relative to an Equal-Weighted Index
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Figure 3
Differences in the Number of Factors Driving Conditional Changes in Expected Turnover and Returns for 

Turnover-Beta-Sorted Portfolios when Betas are Measured Relative to a Value-Weighted Index
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Figure 4
Differences in the Number of Factors Driving Conditional Changes in Expected Turnover and Returns 

for Returns-Beta-Sorted Portfolios when Betas are Measured Relative to a Value-Weighted Index





Table 1
Summary Statistics for Turnover and Returns of Size- and Turnover-Ranked Portfolios

Of AMEX / NYSE Equal-weighted (1966-1996)

(106 US$) Monthly Turnover Autocorrelation Coefficients

Panel A
Average

Capitalization
Volume

 Beta Mean Std. Dev. Max Min ρ1 ρ2 ρ3 ρ6 ρ12

Portfolio 1 78.747 0.539 0.0313 0.0122 0.0824 0.0081 0.793 0.666 0.582 0.489 0.379

Portfolio 2 86.244 0.712 0.0406 0.0183 0.1311 0.0094 0.825 0.713 0.648 0.502 0.410

Portfolio 3 76.553 0.915 0.0498 0.0231 0.1596 0.0120 0.811 0.675 0.602 0.490 0.435

Portfolio 4 586.194 0.632 0.0302 0.0125 0.0705 0.0090 0.898 0.877 0.845 0.776 0.697

Portfolio 5 610.273 0.876 0.0423 0.0163 0.0972 0.0108 0.867 0.825 0.790 0.715 0.660

Portfolio 6 570.136 1.236 0.0651 0.0227 0.1452 0.0166 0.819 0.764 0.711 0.609 0.628

Portfolio 7 10798.808 0.798 0.0317 0.0184 0.0900 0.0063 0.950 0.945 0.933 0.902 0.848

Portfolio 8 8867.496 0.933 0.0383 0.0202 0.1016 0.0095 0.933 0.927 0.913 0.881 0.839

Portfolio 9 6125.215 1.291 0.0555 0.0251 0.1449 0.0178 0.901 0.900 0.884 0.844 0.821



(106 US$) Monthly Return Autocorrelation Coefficients

Panel B
Average

Capitalization
Return
Beta Mean Std. Dev. Max Min ρ1 ρ2 ρ3 ρ6 ρ12

Portfolio 1 78.747 0.962 0.1661 0.0592 0.3157 -0.2631 0.203 -0.020 -0.018 -0.012 0.237

Portfolio 2 86.244 1.202 0.0165 0.0733 0.4278 -0.3209 0.193 -0.032 -0.030 -0.009 0.216

Portfolio 3 76.553 1.414 0.0169 0.0871 0.4924 -0.3299 0.198 -0.011 -0.043 -0.021 0.214

Portfolio 4 586.194 0.720 0.0122 0.0442 0.2558 -0.2346 0.153 -0.044 -0.015 0.000 0.112

Portfolio 5 610.273 0.993 0.0124 0.0593 0.2846 -0.2941 0.145 -0.033 -0.038 -0.013 0.073

Portfolio 6 570.136 1.236 0.0110 0.0741 0.3488 -0.3355 0.149 -0.032 -0.049 -0.026 0.072

Portfolio 7 10798.808 0.532 0.0102 0.0389 0.1740 -0.1598 0.042 -0.051 0.015 -0.045 0.055

Portfolio 8 8867.496 0.738 0.0108 0.0483 0.1870 -0.2478 0.086 -0.055 -0.033 -0.023 0.009

Portfolio 9 6125.215 0.973 0.0098 0.0614 0.2362 -0.2885 0.104 -0.020 -0.043 -0.039 -0.007



Table 2
Summary Statistics for Instrumental Variables Used to Predict Changes in Turnover for

Size- and Turnover-Beta Sorted  AMEX / NYSE Stocks (1966-1996)

DMAVTO MDPTO MAVRE MDPRE DJAN

Mean 0.0001 0.0032 0.0138 0.1445 N/A

Std. Dev. 0.0080 0.0023 0.0587 0.0099 N/A

Max 0.0327 0.0138 0.3098 0.1261 N/A

Min -0.0410 0.0002 -0.2784 0.0051 N/A

Correlations

DMAVTO 1.000

MDPTO 0.245 1.000

MAVRE 0.302 0.155 1.000

MDPRE 0.289 0.269 0.421 1.000

DJAN 0.170 -0.061 0.022 -0..017 1.000

Note: The instruments include the lagged difference in turnover for the market as a whole (DMAVTO),
the lagged cross-sectional dispersion of turnover for the market as a whole (MDPTO), the lagged average market return
(MAVRE), the lagged dispersion in returns for the market (MDPRE), and a January dummy variable (DJAN).



Table 3

Regressions of Changes in Turnover on Instrumental Variables
 over the Period 1966 to 1996
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Coefficients on Instrumental Variables

αij αj1 αj2 αj3 αj4 αj5 adj-R2

Portfolio 1 0.0023**
(3.107)

-0.1925**
(-4.243)

-0.4464**
(-2.907)

0.0338**
(5.34)

-0.0676*
(-1.777)

-0.004**
(-3.25)

0.147

Portfolio 2 0.0026**
(2.564)

-0.2409**
(-3.809)

-0.5887**
(-2.75)

0.0522**
(5.192)

-0.0861
(-1.623)

-0.0032*
(-1.884)

0.128

Portfolio 3 0.0037**
(2.036)

-0.4088**
(-3.646)

-1.1985**
(-3.158)

0.0781**
(4.992)

-0.0947
(-1.007)

0.0048
(1.567)

0.105

Portfolio 4 0.0015**
(2.577)

-0.2539**
(-6.978)

-0.188
(-1.526)

0.0202**
(3.973)

-0.0876**
(-2.871)

0.0022**
(2.192)

0.172

Portfolio 5 0.002**
(2.755)

-0.3487**
(-7.713)

-0.2754*
(-1.799)

0.0307**
(4.86)

-0.1192**
(-3.143)

0.0026**
(2.125)

0.205

Portfolio 6 0.0036**
(2.342)

-0.6669**
(-7.165)

-0.901**
(-2.86)

0.0644**
(4.957)

-0.1915**
(-2.453)

0.0164**
(6.496)

0.247

Portfolio 7 0.0008
(1.348)

-0.3573**
(-9.35)

-0.0993
(-0.767)

0.0183**
(3.427)

-0.0667**
(-2.081)

0.0042**
(4.057)

0.236

Portfolio 8 0.0013*
(1.954)

-0.3551**
(-8.727)

-0.1502
(-1.091)

0.0253**
(4.456)

-0.0958**
(-2.808)

0.0046**
(4.202)

0.233

Portfolio 9 0.001
(0.832)

-0.5861**
(-8.149)

-0.2716
(-1.116)

0.0366**
(3.643)

-0.1218**
(-2.108)

0.0164**
(8.408)

0.272

Note: Instrumental variables are a constant, the lagged difference in turnover for the market as a whole (DMAVTOt-1),
the lagged cross-sectional dispersion of turnover for the market as a whole (MDPTOt-1), the lagged average market
return (MAVREt-1), the lagged dispersion in returns for the market (MDPREt-1), and a January dummy variable
(DJANt).  A double (single) asterisk, ** (*), indicates significance at the .05 (.10) level.



Table 4

Chi-square Value and Significance Levels for Heteroskedasticity-Consistent Tests
of Latent Variable Models that Test the Number of Factors with Turnover Data based on

Turnover-Beta-Ranked Portfolios

One-Factor
Model

Two-Factor
Model

Three-Factor
Model

Four-Factor
Model

Sampling
Period

Number of
Observations

Chi-Square
(P-value)

Chi-Square
(P-value)

Chi-Square
(P-value)

Chi-Square
(P-value)

03/1966 - 12/1976 130 26.02
(0.9571)

-- -- --

01/1977 - 12/1986 120 50.48
(0.1239)

-- -- --

01/1987 - 12/1996 120 53.67
(0.0728)

35.36
(0.1596)

-- --

Note: The models restrict the system of regression of J changes in turnovers of nine stratified equal-weighted portfolios
on L instrumental variables. For each month from January 1962 to December 1996, securities are sorted into 3 size-
ranked portfolios according to their previous year-end market capitalization.  Each size portfolio is then further
partitioned into 3 turnover-sorted portfolios according to the turnover betas of its component securities. The turnover of
a stock in a month is defined as the total trading volume of the month divided by the total number of shares outstanding
at the end of the previous month. The turnover of a portfolio is an equal-weighted average of individual turnovers. The
monthly change in turnover is the first difference of the monthly portfolio turnover and that of the previous month.
Instrumental variables are a constant, the lagged difference in turnover for the market as a whole (DMAVTOt-1), the
lagged cross-sectional dispersion of turnover for the market as a whole (MDPTOt-1), the lagged average market return
(MAVREt-1), the lagged dispersion in returns for the market (MDPREt-1), and a January dummy variable (DJANt).
Define δij as the coefficient of the ith portfolio's change in turnover on the jth instrumental variable. A K-latent-variable
model imposes (J - K)(L - K) restrictions on the system, which can be written as

               K

δjl = ∑   βjk αkl
    k=1

Where βik and αkj are free parameters. The tests are conducted by estimating the restricted system and computing
Hansen's (1982) chi-square statistic.



Table 5

Regressions of Portfolio Returns on Instrumental Variables
over the Period 1966 to 1996
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Coefficients on Instrumental Variables

αi0 αi1 αi2 αi3 αi4 αi5 Adj-R2

Portfolio 1 0.0081*
(1.862)

0.9934
(0.908)

0.2063**
(2.077)

-5.7301**
(-2.249)

1.0981***
(2.845)

0.0872***
(7.637)

0.182

Portfolio 2 0.0064
(1.286)

1.3098
(1.051)

0.1682
(1.487)

-7.876***
(-2.713)

1.2709***
(2.891)

0.0922***
(7.085)

0.165

Portfolio 3 0.0021
(0.361)

1.44
(1.006)

0.197
(1.517)

-8.0766**
(-2.424)

1.2775**
(2.531)

0.0976***
(6.533)

0.141

Portfolio 4 0.0055
(1.587)

1.4041
(1.62)

0.2348***
(0.985)

-3.2868
(-1.628)

0.3723
(1.218)

0.0322***
(3.562)

0.064

Portfolio 5 0.0054
(1.303)

1.5779
(1.515)

0.2764***
(2.925)

-4.86**
(-2.004)

0.4938
(1.345)

0.0379***
(3.487)

0.066

Portfolio 6 0.0005
(0.104)

2.1523*
(1.661)

0.2155*
(1.833)

-6.5663**
(-2.176)

0.6103
(1.335)

0.0492***
(3.64)

0.056

Portfolio 7 0.0056*
(1.727)

1.3424
(1.647)

0.182**
(2.461)

-2.98
(-1.57)

-0.0739
(-0.257)

0.0155**
(1.828)

0.024

Portfolio 8 0.0046
(1.347)

1.5212*
(1.783)

0.2144***
(2.77)

-3.277
(-1.65)

-0.0879
(-0.292)

0.0182**
(2.04)

0.031

Portfolio 9 0.0036
(0.885)

1.5821
(1.534)

0.2266**
(2.421)

-4.687*
(-1.952)

0.1053
(0.29)

0.0236**
(2.19)

0.031

Note: The independent variables are a constant, the lagged dividend yield on the market (DPRt-1), the lagged spread
between returns on the 20-year government bond and the one-month T-bill (LTMSTt-1) , the lagged relative short rate
(RSRt-1), i.e., the 30-day T-bill total return minus the moving average total return on 30-day T-bills over the last year,
the lagged change in average turnover for the whole market (DMAVTOt-1), and a January dummy variable (DJANt). A
double (single) asterisk, ** (*), indicates significance at the .05 (.10) level.



Table 6

Chi-square Value and Significance Levels for Heteroskedasticity-Consistent Tests
of Latent Variable Models that Test the Number of Factors with Return Data based on

Turnover-Beta-Ranked Portfolios

One-Factor
 Model

Two-Factor
 Model

Three-Factor
Model

Four-Factor
Model

Sampling
Period

Number of
Observations

Chi-Square
(P-value)

Chi-Square
(P-value)

Chi-Square
(P-value)

Chi-Square
(P-value)

03/1966 - 12/1976 130 47.90
(0.1828)

-- -- --

01/1977 - 12/1986 120 49.94
(0.1349)

-- -- --

01/1987 - 12/1996 120 49.05
(0.1545)

-- -- --

Note: The models restrict the system of regressions of J returns of nine stratified equal-weighted portfolios on L
instrumental variables. For each month from January 1962 to December 1996, securities are sorted into 3 size-ranked
portfolios according to their previous year-end market capitalization.  Each size portfolio is then further partitioned into
3 turnover-sorted portfolios according to the turnover betas of its component securities. The turnover of a stock in a
month is defined as the total trading volume of the month divided by the total number of shares outstanding at the end
of the previous month. The turnover of a portfolio is an equal-weighted average of individual turnovers. The monthly
change in turnover is the first difference of the monthly portfolio turnover and that of the previous month. The
instrumental variables are a constant, the lagged dividend yield on the market (DPRt-1), the lagged spread between
returns on the 20-year government bond and the one-month T-bill (LTMSTt-1) , the lagged relative short rate (RSRt-1),
i.e., the 30-day T-bill total return minus the moving average total return on 30-day T-bills over the last year, the lagged
change in average turnover for the whole market (DMAVTOt-1), and a January dummy variable (DJANt).
Define δij as the coefficient of the ith portfolio's change in turnover on the jth instrumental variable. A K-latent-variable
model imposes (J - K)(L - K) restrictions on the system, which can be written as

               K

δjl = ∑   βjk αkl
    k=1

Where βik and αkj are free parameters. The tests are conducted by estimating the restricted system and computing
Hansen's (1982) chi-square statistic.



Table 7

Chi-square Value and Significance Levels for Heteroskedasticity-Consistent Tests
of Latent Variable Models that Test the Number of Factors with Turnover and Return Data

based on Return-Beta-Ranked Portfolios

One-Factor
 Model

Two-Factor
 Model

Three-Factor
Model

Four-Factor
Model

Sampling
Period

Number of
Observations

Chi-Square
(P-value)

Chi-Square
(P-value)

Chi-Square
(P-value)

Chi-Square
(P-value)

Panel A:  Turnover

03/1966 - 12/1976 130
38.18

(0.5524) -- -- --

01/1977 - 12/1986 120 44.54
(0.2826)

-- -- --

01/1987 - 12/1996 120 46.05
(0.2326)

-- -- --

Panel B: Returns

03/1966 - 12/1976 130
42.29

(0.3725)
-- -- --

01/1977 - 12/1986 120 65.37
(0.0069)

37.53
(0.1077)

-- --

01/1987 - 12/1996 120 52.37
(0.0910)

36.71
(0.1254)

-- --

Note: The models restrict the system of regressions of J returns of nine stratified equal-weighted portfolios on L
instrumental variables. For each month from January 1962 to December 1996, securities are sorted into 3 size-ranked
portfolios according to their previous year-end market capitalization.  Each size portfolio is then further partitioned into
3 turnover-sorted portfolios according to the turnover betas of its component securities. The turnover of a stock in a
month is defined as the total trading volume of the month divided by the total number of shares outstanding at the end
of the previous month. The turnover of a portfolio is an equal-weighted average of individual turnovers. The monthly
change in turnover is the first difference of the monthly portfolio turnover and that of the previous month. The
instrumental variables for the change in turnover and returns are the same as those described in Tables 4 and 6.  Define
δij as the coefficient of the ith portfolio's change in turnover on the jth instrumental variable. A K-latent-variable model
imposes (J - K)(L - K) restrictions on the system, which can be written as

               K

δjl = ∑   βjk αkl
    k=1

Where βik and αkj are free parameters. The tests are conducted by estimating the restricted system and computing
Hansen's (1982) chi-square statistic.


