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Abstract

Campbell (1994) argues that a clear understanding of dynamic stochastic
general equilibrium models can best be achieved by an analytical approach,
and he suggests loglinearizing the Euler equation and the capital accumulation
equation. Inspired partly by his approach and partly by the results of Long
and Plosser (1983), this paper suggests an alternative approximate analytical
solution procedure to dynamic stochastic models by loglinearizing the utility
function and the capital accumulation equation. This approximate solution
has a simple analytical form; thus, it is relatively easy to obtain further results
based on the solution. Comparing its performance with that of the conventional
method, it is further argued that the suggested solution procedure is most useful
for dynamic stochastic models exhibiting endogenous growth.
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1. INTRODUCTION

Macroeconomists often have to deal with the problem of solving nonlinear dynamic
models, either with or without stochastic elements. A typical example is the class
of dynamic stochastic general equilibrium models. After obtaining the system of
dynamic equations characterizing the equilibrium, one faces the problem of ‘solving’
the dynamic system (in the sense of expressing the endogenous variables in terms
of exogenous variables and lagged endogenous variables), before being able to draw
conclusions regarding the behavior of variables in the model.

While the above steps are conceptually simple, the practical problem of this pro-
cedure is that the dynamic system is nonlinear in most cases. For example, even
in the simplest Ramsey-Cass-Koopmans model, there is a mixture of additive and
multiplicative elements (Campbell, 1994; Romer, 2001). This makes it impossible to
obtain an exact analytical solution in general. The only well-known exception is the
situation in which intertemporal elasticity of substitution is one, and capital depreci-
ates completely in one period (Long and Plosser, 1983). Unfortunately, the usefulness
of this result is limited, since the assumption of complete depreciation of capital in
one period is extremely unrealistic.

Since an exact analytical solution is unavailable and since computational methods
exist and are no longer costly (see, for example, Taylor and Uhlig, 1990; Judd, 1998),
a lot of dynamic stochastic general equilibrium models (such as the various papers col-
lected in Cooley, 1995) rely on the computational approach to obtain the equilibrium
solution. In a widely cited paper, Campbell (1994) argues that compared with the
computational approach, an analytical approach to the study of dynamic stochastic
general equilibrium models would provide more insights about the dynamic effects of
the underlying economic shocks. Following Baxter (1991), he focuses on the Euler

equation and the capital accumulation equation. To compensate for the fact that an



exact analytical solution cannot be obtained for more general cases, he derives an
approrimate analytical solution by taking a first-order Taylor approximation in logs
of the variables for these two equations.!*? While his approach simplifies the analysis
and thus achieves some of the objectives stated in his paper, his analysis still has to
rely primarily on numerical calculations because the solution to a quadratic equation
(such as Eq. (26) of his paper) involves a square root term and cannot be further
simplified.

This paper further pursues the idea suggested in Campbell (1994). Inspired partly
by his approach and partly by the results of Long and Plosser (1983), this paper sug-
gests an alternative approximate analytical solution procedure to dynamic stochas-
tic general equilibrium models with constant intertemporal elasticity of substitution
(CIES) utility function (and with the rate of depreciation of capital in a period equals
to any number between 0 and 1). The approximate solution is obtained by taking
loglinear approximation of the utility function and the capital accumulation equation
around the balanced growth path. (The rationale behind this proposed procedure is
given in Section 3.) Since the endogenously determined saving rates turn out to be
time-invariant, the solution has a simple analytical form. As a result, it is relatively
easy to obtain further analytical results based on this solution.

To assess the performance of this alternative analytical approach, it would be useful

to compare it with other possible methods. Based on a comparison of the method

1Campbell (1994, p. 465) also explains why, in a homoskedastic setting, this approximate solution
is the same as that based on taking a second-order Taylor approximation in logs of the variables

(such as in Christiano, 1988).
2This method of solving nonlinear dynamic discrete-time models has been generalized in Uhlig

(1999), who solves matrix quadratic equations after loglinerarizing the necessary equations charac-
terizing the equilibrium. Note that while Uhlig generalizes the approach used in King et al. (1988)
and Campbell (1994), he has reservation regarding the term ‘analytical approach’ used in Campbell
(1994); see Uhlig (1999, footnote 3).



suggested in Campbell (1994) and that suggested in this paper, as well as on the idea
drawn from existing literature on theoretical growth models, it is argued that the
solution procedure suggested in this paper is most useful for those dynamic stochastic
models in which sustained growth can be generated endogenously (such as Romer
1986; Rebelo, 1991; Collard, 1999).

The analysis presented in this paper also suggests that the assumption of a nonstan-
dard capital accumulation equation used in a number of papers may not be necessary.
This assumption has been used in Hercowitz and Sampson (1991), and then followed
by a number of other papers such as Kocherlakota and Yi (1995, 1997) and Collard
(1999). These papers assume that the current level of capital stock is a Cobb-Douglas
function of its lag term and current investment. It appears that the sole reason for
using this form of capital accumulation (instead of the standard linear form) is to
derive a closed-form solution. The analysis offered in this paper shows that as long
as the Cobb-Douglas capital accumulation equation is interpreted as the loglinear ap-
proximation of the linear capital accumulation equation around the balanced growth
path, the approach of Hercowitz and Sampson (1991) can easily be reconciled with
the standard approach.

The remaining parts of this paper are organized as follows. To make a comparison
between the results of the procedure offered here and existing results, and to system-
atically show how the suggested approximate solution is developed, this paper first
focuses on the basic nonstochastic neoclassical growth model (with fixed labor sup-
ply), which has been examined in Section 3.2.1 of King et al. (1988), and Section 2 of
Campbell (1994). Section 2 of this paper follows Campbell (1994) and loglinearizes
the Euler equation and the capital accumulation equation. Section 3 suggests a dif-
ferent solution procedure by taking the loglinear approximation of the utility function
and the capital accumulation equation. (For convenience, this method will be called

the ‘alternative’ method, and the method suggested in Section 2 will be called the



‘conventional’ method.) Section 4 compares the two approximate solutions, and sug-
gests the conditions under which the two methods will produce similar equations of
motion for the variables.

Partly based on the analysis in Section 4, it is argued that the method suggested
in this paper is most useful for the class of dynamic stochastic general equilibrium
models with endogenous growth. To demonstrate this point, Section 5 applies the
proposed solution procedure to a real-business-cycle model with endogenous growth
examined in Hercowitz and Sampson (1991), except that the Cobb-Douglas capital
accumulation equation used in that paper is replaced by the standard specification.

Section 6 provides concluding remarks.

2. THE CONVENTIONAL LOGLINEAR APPROXIMATE SOLUTION
TO THE RAMSEY-CASS-KOOPMANS MODEL

The closed economy is populated by a constant and large number of identical agents
(consumer-producers). The production technology is represented by a standard Cobb-

Douglas production function:
e —a a
Y, = AF (K, (147,) M) = AKE [(147,)' M| "= A1 +4,) " Kg, (1)

where 0 < o < 1; 7, (7, > 0) is the rate of exogenous labor-augmenting technological
progress; the (inelastically supplied) labor input at each period, /V;, has been normal-
ized to be 1; and Y; and K; are, respectively, the output and the associated capital
input at period ¢. (As labor input has been normalized to 1, Y; and K; can also be
interpreted respectively as output per worker and capital per worker.)
On the preference side, the representative agent chooses a consumption path to

maximize the following lifetime utility function:
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where (3 is the subjective time discount factor, o (¢ > 0) is the intertemporal elasticity
of substitution, and C; is consumption at period ¢.

The capital accumulation process is described by:
Kipn=(1-6) K+ I (3)

where § (0 < 6 < 1) is the depreciation rate per period, and I; is investment at period

t. Finally, the model is closed by the resource constraint:
Y, = Ci + . (4)

The use of Cobb-Douglas production function (1) and CIES utility function (2) is
quite standard in the literature. Moreover, the analysis of King et al. (1987, Sec-
tions A3 and A4; 1988, Section 2.3) suggest that such restrictions on technology and
preferences would lead to the phenomenon of balanced growth, in which certain key
variables grow at constant but possibly different rates. It is well known that along the
balanced growth path of the Ramsey-Cass-Koopmans model, output, consumption,
investment, and capital all grow at ~,, the rate of exogenous technological progress.

To transform a growing economy into a ‘no-growth’ economy, define the variable
per unit of effective labor as the variable per worker divided by (1 + ’yw)t, and denote
it in a lowercase letter (such as ¢, = C;/ (1++,)"). With this transformation, (3)
leads to:

(1+7,) k1 = (1 = 0) by + 4y, (5)

and (1) and (4) lead to:
AR = ¢ + iy (6)

Moreover, it can be shown that the representative agent is maximizing an equivalent

utility function defined in terms of consumption per unit of effective labor:
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where the effective discount factor (8, differs from (§ owing to the transformation of
the preference specification (see, for example, Section 2.4 of King et al., 1988) and is
given by:

B, =B(1+7,)"7. (8)

To guarantee finiteness of lifetime utility, the restriction 3, < 1 is required. Note

(-4,

. .. . cr . =1,
that when o =1, 8, = 8 according to (8); moreover, the utility function ~2—7— in

(2) becomes In Cy;, and the corresponding utility function in (7) becomes In ¢4 ;.
The first-order condition for optimal choice of this model, given the objective func-

tion (7) and the constraints (5) and (6) is

1

Boeri [1 =6+ adk i = (147 e . (9)
Moreover, (5) and (6) lead to:
(1 + ’}/m) ]{Jt+1 = (]_ - 6) k’t + Ak)? — Ct. (10)

Therefore, the optimal solution of the economy, in terms of consumption and capital,
is described by the system of two nonlinear difference equations: (9) and (10).> The
optimal choice also satisfies a transversality condition.

An exact analytical solution is not possible for the above system of optimal choice,
except for the special case in which ¢ = 1 and § = 1 (Long and Plosser, 1983;
McCallum, 1989). For the general case, Campbell (1994) discusses the advantages of
an analytical approach and suggests loglinearizing the Euler equation and the capital
accumulation equation.

The analysis in this section follows this idea but modifies the method slightly.

In particular, the following analysis expresses the approximate solution in terms of

3To economize on the use of words, consumption per worker, consumption per effective unit of
labor, deviation of consumption per effective unit of labor from the steady-state value, and so forth

are simply represented by the term ‘consumption’ in this paper, if the context is clear.



fundamental preference and technology parameters, instead of the real interest rate
used in Campbell (1994). While expressing the approximate solution in terms of
the real interest rate is useful for numerical calculations (as is done in Section 2.6 of
Campbell (1994) and, indirectly, in Section 4 of this paper), expressing the solution in
terms of fundamental parameters facilitates the comparison of the conventional and
alternative approximate solutions.

To obtain the loglinear approximation, first use the Euler equation and the capital
accumulation equation to get the steady-state values of k and c. Equations (9) and

(10) imply that & and c are related by:

1
1— 64 Ak~ = ﬂ, (9a)
Be
and
1 — 1-6
¢ |11 ﬁfof( ) (51| R (10a)
Next, linearize (9) and (10) around In k and Inc. Linearizing (9) leads to:
(Incppr —Ine) + 0 (Inkiyy —Ink) = (Ing, — Inc), (11)
where
O =0(1—a)[1—06,(1—26)], (11a)

and 6., which can be interpreted as the effective depreciation rate for the transformed

problem, is defined as:

)
§p = 20 (12)
L4+,
It is easy to see that 0 < ¢, < 1. Similarly, linearizing (10) leads to:
(Inki1 —Ink) =6Op, (Inky —Ink) — Ogc (Inc, — Inc) , (13)
where
1
Ok = ﬁ—m, (13a)



and

1-f,1-6.(1-a)
ﬁxa '

Egs. (11) and (13) form a system of loglinear difference equations in consump-

Oke (13b)

tion and capital stock. This system is an approrimation of the nonlinear system of
difference equations (9) and (10).

There are many ways to solve the above loglinear system. In the following analysis,
the method of undetermined coefficients is used, and the emphasis is on the elasticity
of capital stock with respect to its lag, 7, defined as (14) below, or in (20) of
Campbell (1994). This coefficient is focused because the results in Rebelo (1991)
and Lau (1999) suggest that 7, equals to 1 for an endogenous growth model. (The
limiting case of the Ramsey-Cass-Koopmans model with no exogenous technological
progress as « tends to 1 is the AK endogenous growth model). On the other hand,
it is not clear whether there are similar special results for other coefficients such
as the elasticity of consumption with respect to current capital, given in (19) of
Campbell (1994). Focusing on the dynamic equation of the capital stock turns out
to simplify the analysis, and to suggest the conditions under which the alternative
method suggested in this paper will be most useful.

As the method of undetermined coefficients is well known, I only sketch the pro-
cedure and present the main results.* First, transform the system of first-order dif-
ference equations in consumption and capital, (11) and (13), into a second-order
difference equation in capital. Second, guess that the solution of log capital in terms
of its lag is

Inki1 —Ink=mny, (Ink —Ink), (14)

where 7, is an unknown coefficient to be determined. Substituting (14) into the

second-order difference equation in capital leads to an equation with only one vari-

4Detailed analysis can be found in Lau (2002), who examines a more general case with the

presence of stochastic productivity shocks.



able: the deviation of capital per effective unit of labor from the steady-state value.
Equating the coefficients of (In k; —In k) on both sides of this equation and simplifying

give the unknown coefficient 7, as:®

(1 + Ok + Ocber) — \/(1 + Ok + Oxcler,)” — 40
Mk = 5 : (15)

Since 0 >0,0< (3, <1,0<a<1,and 0 < §, < 1, it is easy to show from (11a),
(13a) and (13b) that O > 0, O > 0, and 0. > 0. As a result, 1, in (15) is between

zero and one.

3. AN ALTERNATIVE APPROXIMATE SOLUTION TO THE
RAMSEY-CASS-KOOPMANS MODEL

It is well known that an analytical solution for a dynamic stochastic general equi-
librium model with CIES utility function is possible only for the special case of 0 = 1
(log utility) and § = 1; see, for example, Romer (2001, Chapter 4). However, while
this special case is useful for some expositional purposes, it is not very helpful from
a practical perspective, as the assumption of complete depreciation of capital in one
period is very unrealistic. For the more general cases, Campbell (1994) mentions the
advantages of an approximate analytical solution. However, most of the results in his
paper are still based on numerical calculations, and few of the results can be deduced
analytically. The same applies to the analysis in Section 2 of this paper. While it
streamlines slightly the derivation of the conventional solution by focusing on the
elasticity of capital stock with respect to its own lag, not much can be obtained with-

out further use of numerical calculations, since the solution to a quadratic equation

®Equating the coefficients of (Ink; —Ink) gives the following quadratic equation: 7%, —
(14 Ox + OreOck) N, + Ok = 0. It can be shown that there are two unequal positive real roots
to this quadratic equation. Moreover, the larger root (which is larger than ﬂ;l) is excluded, since

the transversality condition would otherwise be violated.
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(Eq. (15) above) involves a square root term and cannot be further simplified.

This section suggests an alternative approximate analytical solution to the Ramsey-
Cass-Koopmans model with CIES utility function (¢ > 0) when the depreciation
rate is not restricted (0 < § < 1). The underlying idea of the alternative solution
can be understood as follows. It is observed from the analysis in Section 2 that
the dynamic optimization problem is to maximize (7) subject to (5) and (6). As
mentioned in Campbell (1994) and Romer (2001), the difficulty lies in the fundamental
nonlinearity arising from the interaction between additive and multiplicative elements
in the model: multiplicative elements appear in the utility function in (7) and in
the production function in the left-hand side of (6), but additive elements appear in
(5) and (6). With log utility and complete depreciation in one period, the capital
accumulation equation (5) and the utility function (7) become loglinear, and there
is one remaining linear element appearing in (6). In this case, it turns out that
the endogenously determined saving rates are time-invariant, and the time-invariant
saving rates prevent the linearity in (6) from causing problems, since optimal level of
investment is a constant fraction of output. Therefore, an exact analytical solution
is possible for this special case.

Based on the above observation, a logical conjecture is that if the utility function
and the capital accumulation equation could be made loglinear, then an analytical
solution may be possible. While an exact analytical solution is impossible when the
capital accumulation equation (5) is not loglinear for the general case of incomplete
depreciation (6 < 1) and the utility function (7) is not loglinear for o # 1, the
following analysis seeks an approzrimate analytical solution to the above problem by
maximizing the loglinear approzimation of utility function (7) subject to (6) and the
loglinear approximation of the capital accumulation equation (5).

It is easy to see from (5) that investment per unit of effective labor and capital per

11



unit of effective labor along the balanced growth path are related by:
6+, k=1. (5a)

Linearizing the capital accumulation equation (5) around Ink and In i, where k and

i are related according to (5a), leads to
Inkyyy —Ink=(1-06,)(Ink; —Ink)+ 6, (Iniy — In3),
which is equivalent to:
Inkyyy = (1 —6)Ink, + 6, Indi; — 6, In (6 +,), (5b)

where 6, is defined before in (12). Note that when 6 = 1, (5b) is an exact loglinear
form of the capital accumulation equation (5). On the other hand, the (first-order)

loglinear approximation of the CIES utility function in (7) around In ¢ is given by:

C . — o
s = +c(17%) (Inciy; —Ine). (7a)
The alternative approximate solution is obtained by maximizing

> (0. [l (7h)

subject to (6) and (5b), after ignoring the constant terms in (7a). Applying the
method of dynamic programming, the solution is described by a time-invariant policy
function that maps the state variable(s) into the agent’s control variable(s). For this
problem, the state variable at period t is k;, and the control variable is i;. The value

function, V' (k), is defined by the Bellman equation of optimality:
V (k) = max | (%) In (AK — 3)) + B,V (kiet)| (16)
subject to the approximate capital accumulation equation (5b).

12



The solution is given in Appendix A. It is shown that the optimal policy rule is

expressed in terms of the underlying parameters as follows:

8.06,A

Substituting (17) into (5b) gives the equilibrium dynamic equation of the capital

Ini; =In l ] + aln k. (17)

stock as:

B,aA

or, in deviation form (similar to Eq. (14) in Section 2),

Inkip=[1-(1—a)d,] lnk:t—i-éwln[

Inkiyy —Ink=[1-(1-a)d,](Ink; —Ink). (18)

An important characteristic of the above approximate solution is that the (endoge-
nous) saving rates are time-invariant, as implied by (1) and (17).
The steps of the alternative approximate analytical solution procedure suggested

in this paper can be summarized as follows:

1. To loglinearize the capital accumulation equation around the balanced growth
path (or the steady state if the variables have been transformed into their ‘no-

growth’ counterparts) of the dynamic stochastic model.

2. To loglinearize the CIES utility function. If ¢ = 1, this step can be skipped

since the utility function is already in log form.

3. To obtain the analytical solution by maximizing the (approximate) log-linear
utility function subject to the (approximate) log-linear capital accumulation
equation (as well as other equations of motion of the system). In particular,
obtain the optimal policy functions (expressing the control variables in terms of

the state variables) and the associated dynamic equations of the state variables.
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4. The policy function obtained by this method is one with a constant saving rate,
as indicated by the analysis in this section and in Section 5.2. As such, further

analysis making use of the dynamic properties of the model is relatively easy.

4. UNDER WHAT CONDITIONS WILL THE ALTERNATIVE
APPROXIMATE ANALYTICAL SOLUTION BE MOST USEFUL?

Stimulated partly by the analytical approach advocated in Campbell (1994) and
partly by the solution of the special case in which the single-period utility func-
tion is logarithmic and depreciation of capital is complete in one period (Long and
Plosser, 1983), Section 3 suggests an alternative approximate analytical solution to
the Ramsey-Cass-Koopmans model with CIES utility function by loglinearizing the
utility function and the capital accumulation equation.® The optimal policy rule (17)
and the dynamic equation of capital (18) turn out to be analytically simpler. It is
possible to derive a simple approximate analytical solution because of a property sim-
ilar to that in Long and Plosser (1983): the endogenously determined saving rates are
time-invariant under an (approximate) loglinear utility function and an (approximate)

loglinear capital accumulation equation.

5To a lesser extent, the suggested approximate solution procedure is also stimulated by the linear-
quadratic approach used in Kydland and Prescott (1982) and McGrattan (1990). That approach
solves a problem with a quadratic objective function and linear constraints. For the time-to-build
model considered in Kydland and Prescott (1982) as well as the stochastic growth model considered
in McGrattan (1990), the objective function is nonlinear but the constraints are linear. Kydland and
Prescott (1982, Section 4) approximate the intertemporal utility function with a quadratic function,
and maximize the approrimate quadratic utility function subject to the original linear technological
constraints. A similar approach is used in McGrattan (1990, pp. 42-43). On the other hand, the
approach used in an early version of this paper (which only considers log utility function, a special
case of the CIES utility function in which o = 1) is to maximize the original loglinear utility function

(when o = 1) subject to the loglinear approzimation of the capital accumulation equation.
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While this alternative approach extends the Long-Plosser result to give an approx-
imate analytical solution to the case of more general depreciation rates and more
general utility functions, it is helpful to compare this (approximate) solution to the
conventional one. It turns out that this comparison also suggests the conditions under
which the alternative solution procedure is most useful.

The following analysis focuses on the comparison of the elasticity of capital stock
with respect to its lag in the two approximate solutions: 7, in (14) for the conven-
tional solution and 1 — (1 — ) ¢, in (18) for the alternative solution.

To see whether 7, in (14) is close to 1 — (1 — «) 8, in (18) for different parameter
combinations, first note that 7,, depends on all the parameters 3., o, o and ¢, (with
6, further depending on é§ and ~,), whereas 1 — (1 — «) 8, depends only on « and 6,
but not on 3, and ¢.” Table 1 compares 1, with 1 — (1 — a) §, for a quarterly model.
It is assumed that 6 = 0.025 (10% at an annual rate) and v, = 0.005 (2% at an annual
rate). Moreover, (3, is chosen so as to make the steady-state real interest rate equal
to 0.015 (6% at an annual rate). These values are chosen to resemble the long-run
behavior of the US economy; see Campbell (1994) also. On the other hand, the
exponent on capital in the production function () and the intertemporal elasticity
of substitution (o) may take different values in Table 1. The values of parameter
a examined include 0.33, 0.42 (as used in King et al. [1988]), 0.67 (as suggested
by Mankiw, Romer and Weil [1992] for a neoclassical growth model augmented with
human capital), 0.8 (for a model with a broad concept of capital, in order to be
consistent with the convergence rate reported in Barro and Sala-i-Martin [1992]), and
0.95.

First, it is observed from Table 1 that 7, increases as « increases from 0 to 1 (and

"Note that for the alternative solution, the coefficient 1 — (1 — «) 8, of dynamic equation (18)
does not depend on o, but the (endogenously determined and time-invariant) saving rates in (17)

depend on o (through the term 3,,).
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decreases with respect to o). These results have been confirmed analytically in Lau
(2002). Second, it is obvious that 1 — (1 — «) 6, increases in « (and is independent of
o). The third and most important observation is that as « tends to 1, both 7, and
1 —(1— )b, tend to 1, and thus the difference between 7, and 1 — (1 — a) 6, goes
to 0. This pattern is observed for all values of o. Unreported results show that the
pattern in Table 1 is also robust to minor changes in v,, ¢, and the real interest rate
(or 5,).

The numerical calculations in Table 1 suggest that the two approximate analyti-
cal solutions to the Ramsey-Cass-Koopmans model (with Cobb-Douglas production
function and CIES utility function) are very similar when « is close to 1 and other
parameter values are chosen to resemble the long-run behavior of the US economy.
What is the implication of these results?

In a literal sense, parameter « is the exponent of capital in the production function
of the Ramsey-Cass-Koopmans model. According to most empirical results, the esti-
mate of « lies between 0.30 and 0.45, and is far below 1. As a result, the conventional
and alternative approximate solutions for the Ramsey-Cass-Koopmans model differ
quite substantially when « lies in this range. In this sense, the alternative solution
may not be particularly useful, since it is quite different from the conventional approx-
imate solution which is known to have a reasonable degree of accuracy (Campbell,
1994, p. 465).

On the other hand, the alternative solution procedure is useful when one interprets
variable k; in the previous sections as a broad concept of capital, including, possibly,
physical and human capital, financial capital, and stock of knowledge (Rebelo, 1991,
p. 502; Sala-i-Martin, 1990, p. 5). According to this interpretation, parameter «
takes the role of the sum of exponents of all accumulable inputs in the production

8

function of the Cobb-Douglas form.® The production technology exhibits constant

8For example, the exponent of private physical capital () is less than 1 in Eq. (20) of Section 5,
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returns to scale with respect to accumulable inputs if & = 1 but is of diminishing
returns to scale with respect to accumulable inputs if & < 1. Moreover, in the case
of a < 1, the diminishing returns will set in more slowly if « is closer to 1.
According to the latter interpretation, the numerical results in Table 1 imply that
the conventional and alternative approximate solutions will give quantitatively similar
equations of motion when the production technology approaches constant returns to
scale with respect to accumulable inputs. The above analysis is consistent with the
known results about endogenous growth models in the literature (such as Rebelo,
1991 and Lau, 1999). The results in these papers suggest that if the equilibrium
dynamic equation of log capital is of first order for an endogenous growth model
(such as the stochastic or nonstochastic AK model), then the coefficient of the lagged
capital must be 1 for both solutions, because this is the restriction imposed by the
theoretical model so as to produce sustained endogenous growth. As a result, both
conventional and alternative approximate methods will give the same solution (at
least for the nonstochastic model).? Since the Ramsey-Cass-Koopmans model when
a tends to 1 (and «y, = 0) exhibits sustained growth endogenously and the difference
equation of log capital for either solution of this model (Eq. (14) for the conventional
method and Eq. (18) for the alternative method) is of first order, it is not surprising

to see the similarity of the two solutions when « tends to 1.

which is the same as Eq. (1) of Hercowitz and Sampson (1991). On the other hand, owing to the
presence of knowledge (which is modelled as a by-product of accumulated investment and research
activities) in (20), it can easily be seen that the production function is of constant returns to scale

with respect to all accumulable inputs (K; and Hy).
9For a stochastic model, the coefficients of the stochastic shocks in the equilibrium dynamic

equation of capital (which is a first order stochastic difference equation) may differ for the two
approximate solutions, while the coefficient of capital stock in the previous period must be the same

(and equal to 1). This can be observed by comparing (36) and (39) of the model in Section 5.
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5. APPLYING THE ALTERNATIVE METHOD TO A DYNAMIC
STOCHASTIC MODEL WITH ENDOGENOUS GROWTH

The results for the Ramsey-Cass-Koopmans model in previous sections, together
with existing results in the literature about stochastic endogenous growth models,
suggest that the alternative approximate analytical solution procedure is most use-
ful for the class of dynamic stochastic general equilibrium models with endogenous
growth. To illustrate this point, this section applies the method to a real-business-
cycle model with endogenous growth examined in Hercowitz and Sampson (1991).

There are two reasons in choosing the Hercowitz and Sampson (1991) model. First,
a model with labor-leisure choice and stochastic elements is selected to demonstrate
the applicability and simplicity of the alternative solution procedure to models with
these features.!® Second, that paper uses a nonstandard specification of the capital
accumulation equation, which enables them to obtain a closed-form solution. Their
approach has been followed in a number of papers such as Kocherlakota and Yi (1995,
1997) and Collard (1999). The following analysis shows that such a nonstandard
assumption is not necessary. In fact, using the alternative approximate solution
procedure suggested in Section 3, their Cobb-Douglas capital accumulation equation
arises naturally from the loglinear approximation of the standard capital accumulation
equation around the balanced growth path.

The following model is taken from Hercowitz and Sampson (1991), except that their
Cobb-Douglas capital accumulation equation (Eq. (2) in their paper) is replaced by
a standard specification. Since the model has been described in detail in their paper,

it is discussed only briefly here. The closed economy is populated by a constant and

10 A5 is demonstrated in Section 5.1, while it is possible to use the conventional method to obtain an
approximate analytical solution for this model, the analysis would lead to very convoluted expressions
once the labor-leisure choice and stochastic shocks are included. The simplicity of the alternative

method can easily be seen after comparing the analysis in Sections 5.1 and 5.2.
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large number of identical agents (consumer-producers). The representative agent’s

lifetime utility function is given by:
E > 4 In (Ct—i—j - Ht+th1$w) ) (19)
=0

where w > 0, H; is an index of knowledge at period t, and E; is the expectation
operator conditional on the information set at period t. Note that labor input V; is

a choice variable in this model. The representative firm’s production function is:
Y, = AK? (H,N,) ™ exp (214) , (20)

where 0 < a < 1 and 2, is a productivity shock.

In Hercowitz and Sampson (1991), capital stock evolves stochastically over time
according to a Cobb-Douglas specification. While Hercowitz and Sampson (1991), as
well Kocherlakota and Yi (1997) and Collard (1999) use adjustment costs as the justi-
fication for adopting this nonstandard capital accumulation equation, it appears that
the main reason is to obtain a closed-form solution.!! This assumption enables these
authors to derive analytically the relationships among various variables according to
their models and to choose the appropriate econometric procedures. Even though this
approach provides some benefits, one may wonder whether the conclusions based on
this nonstandard assumption would still hold with the standard capital accumulation
equation.

In the following analysis, a more standard approach is adopted. To make the dif-
ferences from the original model as small as possible, the following stochastic version

of the standard capital accumulation equation is used:

K1 = [(1—-06) K + L] exp (22,641) , (21)

"Tn each of these papers, no closed-form solution is available if the standard capital accumulation

equation is used, but a closed-form solution is obtained once a nonstandard specification is adopted.

19



where 2y, is a shock to the capital accumulation equation.

Following the idea presented in Arrow (1962) and Romer (1986), Hercowitz and
Sampson (1991) assume that knowledge is a by-product of the accumulated invest-
ment and research activities in the economy. Specifically, it is assumed in their paper
that:

H; = K, (22)

where K, is the average capital stock across firms.
Finally, the resource constraint of the economy is the same as Eq. (4), and each of
the stochastic shock processes (21, and z,;) is assumed to be a stationary first-order

autoregressive process as follows:
2= P121,0-1 + €1, (23)

204 = Qo1 + €2y, (24)

where —1 < ¢, <1, -1 < ¢, <1, and €;; and €9, are white noise processes.
Section 5.1 obtains the approximate analytical solution by the conventional method,

and Section 5.2 uses the alternative method. Section 5.3 compares these two methods.
5.1. The conventional method

The first step of the conventional approximate solution procedure is to find the
first-order conditions corresponding to individual optimization (taking the aggregate
variables as exogenously given). Specifically, individual agents in this economy take
the time path of average capital stock as given, because the action of an individual
has (approximately) no effect on per-capita capital stock under the assumption of a
large number of economic agents.

Applying the method of dynamic programming to this optimization problem, the

state variables at period t are K;, K;, 21+ and 2. On the other hand, the control
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variables are I; and N;. The dynamic optimization problem is defined by the following

Bellman equation of optimality:
V (Kt7 [_(h Z1,t) ZZ,t) =

= max {ln [AKta (KtNt) e exp (z14) — It — KN}

+ BEV (Kt—i-l; K1, 21,441, 22,t+1)} ;

I;,Ny
(25)
subject to the various equations of motion (21), (23) and (24).
It can be shown (in Appendix B) that the first-order conditions are given by:
1 1—6+ @AK;SW) (I_(tJrthJrl)l_a exp (21,641)
W = BE; Crr — Kt—i-thle_lw exXp (2’2,t+1) )
(26)
and
(1+w) KNy (1—a) AKY (KtNt>1_a exp (z1,¢) < 1 ) (27)
C, — KN N, C, — KN}

Equation (26), or more generally (B1) in Appendix B, is the intertemporal Euler
equation, relating the marginal utility of current consumption with the expected
marginal utility of consumption in the next period. Equation (27), or more generally
(B2), is the intratemporal condition relating the marginal utility of consumption and
marginal disutility of work at a particular period, and it represents the trade-off

between consumption and leisure. Simplifying Equation (27) leads to

l—a \&% o ,_\== 1
N, = <1+wA> (K7 (K) ™ (exp 1, )7 (27a)

The second step is to specify the consistency condition between individual and

aggregate variables. At equilibrium, the following equality
Kt - Kt (28)
holds, because of the assumption of identical agents.
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The next step is to combine the individual optimality conditions (26) and (27a),
the equilibrium condition (28) and the laws of motion (21), (23) and (24). Combining
(27a), (26) and (21) with the equilibrium condition (28) lead to, respectively,

l—a \=% 1
N, = <1 n wA> (exp z14)ot+ (29)
1 1—6+ AN " exp (21411)
S — i 30
oK [ Con— Kotz ool ()
and
Ky = {{1 — 6+ ANtl_a exp (21,1:)} K, — C’t} exp (22,441) - (31)

The various variables of this model economy evolve according to the nonlinear
system of Egs. (29), (30), (31), (23) and (24). It can be shown from these five
equations that the model economy exhibits endogenous balanced growth such that
labor input (V) is stationary around a constant mean, but output, consumption,

investment and capital all grow at an average rate y. That is,
Jr=0+yJ,, J=YC LK, (32)

where J; (J =Y,C, 1, K) denotes the value of variable J; at the balanced growth
path, with 21, = 204 = 0, and ~ (the endogenously determined growth rate) is given

by

1-a
72511—5+aAifT5 GJ‘FZ>T]—1 (33)
To guarantee a meaningful growth model, it is assumed that the various parameters
are such that the right-hand side of (33) is positive.

The next step is to loglinearize the dynamic system around the balanced growth

12

path. As observed in Appendix B, this step is extremely tedious.” After using

(B6) to express the deviation of labor supply in terms of the productivity shock, the

12Even though the model in Hercowitz and Sampson (1991) exhibits endogenous growth (and

therefore, according to Lau (1999), the coefficient of lagged capital in the dynamic equation of
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approximate loglinear system (in terms of capital, consumption and the exogenous

shock processes) can be reduced to the following two expectational equations:
(InCy —InCf) — 0ok (In Ky — In Kf) — 0coz1,

= Et [(ln Ct+1 —In C:-H) — QCK (ln Kt+1 —1In K:+1> — 90121,t+1 — 9()2Z2¢+1:| N (34)

and
In Kt+1 —1In K:+1 = HKK (ln Kt —In Kt*) — QKC (ln Ct —In Ct*) +0K121,t + Z2,t4+1, (35)

where the coefficients in (34) and (35) are given in Appendix B.
Finally, solving the approximate loglinear system of equations, (34) and (35) with
(23) and (24), gives the equation of motion of the capital stock as

01— Oxcboo + ¢ (Okcbor — Ok1)

InKiy=~v+InkK, +
S ! 1+ 0kc —OxcOox — ¢,

21, + 22,041 (36)
5.2. The alternative method

As in Section 3, the first step of the alternative method is to loglinearize the capital
accumulation equation around the balanced growth path. (Since the utility function
(19) is logarithmic, there is no further need to loglinearize it.) It can be shown that

along the balanced growth path, investment and capital are related by:

(6+~) K} =1. (21a)

capital is exactly 1), the loglinearization of the dynamic system around the balanced growth path is

still tremendously tedious. One is tempted to give up the conventional analytical approach and use
computational methods to obtain the solution. With great perseverance, I press on the analysis so
as to make clear that while the conventional approximate method works in principle, the expressions
become very convoluted when more elements (such as labor-leisure choice and stochastic shocks) are

added to the model. See also footnote 10.
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Loglinearizing the capital accumulation equation (21) around the balanced growth

path leads to
Ky =In(1+7)—6,In(6+~)+ (1 —06,)In K} +6,In 1 + 20441, (21b)

where §,,, which depends on the endogenously determined growth rate + and is similar
in form to (12), is defined as:
o+

O, = —. 37
1+~ ( )

Note that Eq. (2) of Hercowitz and Sampson (1991) is essentially the same as
Eq. (21b) of this paper, provided that appropriate restrictions are imposed on the
coefficients. Therefore, instead of simply assuming a nonstandard capital accumu-
lation equation, an alternative interpretation of Eq. (2) of Hercowitz and Sampson
(1991) is the loglinear approximation of (a stochastic version of) the standard capital
accumulation equation around the balanced growth path.!?

Using the method suggested in Section 3, the approximate solution is obtained
by maximizing (25) subject to (23), (24) and (21b), where (21b) is the loglinear
approximation of the capital accumulation equation (21). It is shown in Appendix C

that the optimal policy rules are given by (27a) and

I = l—l — g (Z‘f"_ M] .. (38)
Therefore, according to the alternative approximate solution, the endogenously de-
termined saving rates of the Hercowitz and Sampson (1991) model are time-invariant,
which is given by the bracket term in (38).
Substituting (38) into (21b) gives the equilibrium dynamic equation of the capital
stock as:

6, (1
Ky 1 =v+InK, + MZU + 29,441, (39)
o+ w

13A similar interpretation applies to Eq. (3) of Kocherlakota and Yi (1997) and Eq. (3) of Collard
(1999).
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where 7y is given by (33).
Egs. (38) and (39) summarize the main features of the alternative approximate
solution of this economy. The derivation of other equations is similar to that in

Hercowitz and Sampson (1991) and will not be presented.
5.3. A comparison of the two methods

The first comparison between the conventional and alternative methods is about
the equilibrium equation of motion. Comparing (36) and (39) suggests that for the
Hercowitz and Sampson (1991) model with endogenous growth, the coefficient of
lagged capital (the state variable) is the same for both methods. Thus, the long-run
growth properties of the Hercowitz and Sampson (1991) model are not affected by the
choice of the approximate solution procedures. On the other hand, while the form of
the dependence of In K on z; is the same (both depending on the current productivity
shock only), the precise coefficients are different for the two methods. Fortunately,
this difference is probably of minor concerns, especially for empirical work. What
matters most for empirical analysis is the choice of the appropriate functional form
for estimation; the coefficients are estimated from the data anyway. The two methods
suggest the same form of estimation equation for, say, the effect of productivity shock
on capital stock (or output).

The second, and more important, comparison is about the method. When applying
to a dynamic stochastic general equilibrium model with a number of features (such
as the Hercowitz and Sampson (1991) model with labor-leisure choice and stochastic
shocks), the conventional method leads to very convoluted expressions; see especially
(B7) and (B8). On the other hand, a major advantage of the alternative method is
its simplicity, which arises from the time-invariant (endogenous) saving rates. Such
simplicity, which facilitates further derivation of analytical results, represents a major

advantage of this alternative solution procedure.
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6. CONCLUDING REMARKS

Campbell (1994) argues that it is beneficial to use an analytical approach to ex-
amine dynamic stochastic general equilibrium models and suggests loglinearizing the
Euler equation and the capital accumulation equation. An approximate analytical
solution not only enables the reader to trace the dynamic effects of the underlying
economic shocks but also is useful to welfare analysis, such as examining issues related
to the maximized utility level of the representative agent.

This paper further suggests a simpler approximate solution procedure to the class
of dynamic stochastic general equilibrium models by integrating the idea presented in
Long and Plosser (1983) and Campbell (1994). The suggested approximate analytical
solution is obtained by loglinearizing the utility function and the capital accumula-
tion equation around the balanced growth path, and it has the property that the
endogenously determined saving rates are time-invariant. Compared with the con-
ventional approximate analytical solution (which quickly becomes complicated when
the model contains more features, such as labor-leisure choice and stochastic shocks),
the advantage of the alternative approximate solution procedure is its simplicity. As
a result, it is relatively easy to obtain further analytical results based on this solution
procedure and to provide insight about the economic issues under investigation.

The advantages of a simple analytical solution have to be compared with the ad-
vantages of other possible methods, in order to fully assess its contributions. Based
on a comparison of the solution to the Ramsey-Cass-Koopmans model suggested in
Campbell (1994) and that suggested in this paper, together with the time-series prop-
erties of stochastic endogenous growth models (such as those presented in Lau, 1999),
it is suggested that the solution procedure proposed in this paper is most useful for

the class of dynamic stochastic general equilibrium models exhibiting endogenous
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growth.!*  Applying the alternative solution procedure to the model examined in
Hercowitz and Sampson (1991) demonstrates this point.

A by-product of the analysis of this paper is the reconciliation of the approach that
uses a Cobb-Douglas capital accumulation equation (as in Hercowitz and Sampson,
1991) with the standard approach. As long as the Cobb-Douglas capital accumu-
lation equation (with appropriate restrictions on the coefficients) is interpreted as
the loglinear approximation of the standard capital accumulation equation around
the balanced growth path, the main results of those papers using the nonstandard
approach (for example, Hercowitz and Sampson, 1991; Kocherlakota and Yi, 1997;
Collard, 1999) will still hold (approximately) if the standard approach is used.'

APPENDIX A: SECTION 3

The solution can be obtained by the method of undetermined coefficients. Guess

that the value function is of the following form:
V(kt) :a—l—blnkt, (Al)

where a and b are unknown coefficients to be determined. Under this conjecture, the

right-hand side of (16) is given by:

) In (AR — i) + Bo{a+b[(1 — ) Inky + 8, Iniy — 6, In (§+7,)]}.  (A2)

MEquivalently, the approximate solution procedure suggested in this paper is most useful for those

dynamic stochastic general equilibrium models in which the endogenously determined saving rates
are ‘not too time-varying’. Stated in this way, the above point is similar in spirit to the point
mentioned, in the context of the intertemporal asset pricing model, by Campbell (1993, p. 502): ...
a log-linear approximation to the intertemporal budget constraint ... will be accurate when the log

consumption-wealth ratio is ‘not too’ variable.”
13In all these papers, a log utility function is used. The analysis of this paper further suggests

that their results can easily be extended to the class of CIES utility functions.
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Differentiating (A2) with respect to i; gives the optimal policy rule as:

XY
t C(

/ Ak (A3)
=2) 4 B.68,b

The unknown coefficients in (A1) are then determined by substituting (5b), (A1) and
(A3) into (16). In particular, it is found that b = [M} (1=%), Therefore,

the optimal policy rule is expressed in terms of the underlying parameters as (17).

APPENDIX B: SECTION 5.1

By focusing on consumption (instead of investment) as the choice variable and by

denoting

U (Ct, N, Kt) =In <Ct - KtNt1+w> )

the Bellman equation of optimality can be rewritten as:

V (Kt; K, 21t ZZ,t) = max {U (Ct; Ny; Kt) + BEV (Kt+1, Kt+1; 21,441, 22,t+1)] ;

t,4Vt

subject to (23), (24),
Kt+1 = [(1 - 6) Kt + }/t - Ct] exXp (22,t+1> ’
and
a (& -«
Y, = AK; (KtNt> exp (214) ,

which is formed by substituting (22) into (20).

Following standard procedures, it can be shown that the first-order conditions are:

oUu (C’t, Ny, I_(t)
oC,

= OE,

Y, OU (Ciy1, Nip1; Kiia
<1 . 6 + t+1> ( t+ t+ t+ ) eXp (z2,t+1) :

0Ky 11 0Ci11

and
_3U (Ct, Ny [_(t) _ ) oU (Ct, Nt;f_(t). (B2)
ON, ON, oC;
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Substituting the functional forms for utility and production functions, (B1) and (B2)
become (26) and (27) respectively.
Along the balanced growth path, (29), (30) and (31) become

. 11—« Fem -
1 1—6+ad(N*)
* * x) 14w :ﬁ * * ( *> 1+w? (B4)
Cf — Ki (N¥) 1 — K (V)
and
Ky ={[1-6+ AN K - Cr}, (B5)

where the variables J; (J =Y,C, I, K) obey (32) and (33). Combining (32), (B3)
and (B4) lead to (33). Using (32) and (B5) gives

C; = AN =8 — 4] K;. (B5a)

The next step is to loglinearize the dynamic system around the balanced growth

path. Loglinearizing (29) gives

1
InN;, —InN* = o —2 (B6)

Loglinearizing (30) and simplifying gives
(AN =8 =] (InC, = C)=(N)* (In K, — In K7)— (14 w) (N*)** (In N, — In N*)
= B {[A(N)'7" =8 =] (InCryy = InCfy ) = (N (In Koy — I K7,

—u+waﬂ”%mNgy—mNﬂ—[Auwfﬂ-wNw”w—é—ﬂzuH

_[1+7—ﬁ(1—6)
1+~

] AN~ = (N*)* = 5 =] [(1— @) (In Neps — In N°) + 21,4
(B7)
Loglinearizing (31) and simplifying gives

1-8(1—

b
@ugﬂ—ngJ:zuH+lL—%+ - )]mug—mKn
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1 f(1-64)

Bal —6p| (InCy — InCY).

(B8)
Substituting (B6) into (B7) gives (34) and substituting (B6) into (BS8) gives (35),

1-B0=b0) 111 N a N — I NS - o 1
+[ 5a ][(1 ) (I N; — In N*) + 2]

where the coefficients of (34) and (35) are given by:
(vt
AN =61
1+w
- (22
co n CK

o w

90K - )

Bos = (”‘”){[1—ﬁ<1—6n>1+ﬁ<1—6n>9m<},

a+w

Oc2 =1 — Ok,
1-8(1-46,)
T Ba
Oxc =0kk — 1,

= G

QKK:]_—(Sn‘i‘

9K1:[

and 0, is given by (37).
As in Section 2, one can use the method of undetermined coefficients to solve the

approximate loglinear system of equations: (23), (24), (34) and (35). Conjecture that
InC; —InCf = neg (In Ky —In KY) + o121 + Doy, (B9)

and
In K11 —In Kt*+1 =N (In K —In KY) + Nik121,t T Nir222,t T+ Ni322,t+1- (B10)

Substituting (B9) and (B10) into (34) and (35) and equating coefficients, it can be

shown that

Nk = Nks = Mok = 1,
Mo = Neo = 0,
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_ Ok1— Oxcbloo + ¢y (Oxclor — Ok1)

7] - )
K1 1+ 0kc —Oxcbox — ¢y
and
k1 —1n
Ner = —9Kc K

Substituting these parameters into (B10) and using (32) gives (36).
APPENDIX C: SECTION 5.2

Guess that the value function is of the following form:
V (Kt, K, 21t 2’2,t) =dy+diInK; +dyIn K; + fizie + fazoy, (C1)

where dy, dyi, do, f1 and fy are unknown coefficients to be determined. Under this
conjecture, the right-hand side of (25) is given by:

1—

In |:AKta (KtNt) “ exp (zl,t) — It — KtNtLHU

+5Et {do + d1 [ln (1 + ’}/) — 6n In (6 + ’}/) + (1 - 6n) In Kt + 6n In It + 227,5_’_1]
‘|—d2 ln Kt+1 + f1217t+1 -+ f2227t+1} . (02)

Differentiating (C2) with respect to N; gives the optimal choice of N, as (27a), and
differentiating (C2) with respect to I, gives

I - ﬁ5nd1
C 1+ B6.d,

It can be shown from (20), (22), (27a) and (28) that

1—a\are 1—a\ars a(itw) ,_  l=a) tw
( ) _< ) (£p) e (Kt) T (exp 21) @

) (Vi = KN) (C3)

14w

}/t—.[_{tNtler - Am

1+w 1+w

:<oz+w>Yt. (C4)

1+w

Substituting (C4) into (C3) gives
ﬂéndl o+ w
I = Y.
' <1+ﬁ6nd1 <1+w> '
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Substituting the relevant equations into (25), the unknown coefficients in (C1) can

a(l+w)
(atw)—PBlatw(l—bn+adn)]”

be determined. In particular, it is found that d; = As a result,
investment is given by (38).
Finally, substituting (38) into (21b) gives (39), since it can be shown that

pas, 14w l-a, (Lzoy) _
In (1+47) 5"1n(6+7)+6n[1n<1—5(1—5n) +oz+wlnA+oz+wln<1+w> -
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Tablel
The elasticity of capital with respect to its lag term in the two approximate solutions

o
a
0.5 1 2 5
0.971 0.957 0.938 0.902
033 0.980 0.980 0.980 0.980
042 0.978 0.967 0.952 0.922
0.983 0.983 0.983 0.983
0.67 0.990 0.985 0.977 0.962
0.990 0.990 0.990 0.990
0.80 0.995 0.992 0.987 0.977
0.994 0.994 0.994 0.994
0.95 0.999 0.998 0.996 0.993
0.999 0.999 0.999 0.999

The top number in each cell is n,, according to (14) and the bottom number is
1-(1-a)s, according to (18). Parameter a is the exponent on capital in the
production function, and o is the intertemporal elasticity of substitution. The
assumed value of other parameters are 4 =0.025 and y, =0.005. Moreover, in

order to make the steady-state real interest rate equal to 0.015, the implied value of

B, is0.990.
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