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Abstract

Stimulated by recent studies on hyperbolic discounting, Barro (1999) ex-

amines the neoclassical model of capital accumulation using a continuous-time

model and a general time preference function. However, the analysis seems

rather complicated. This paper provides a complementary analysis to Barro

(1999) by emphasizing the transparent derivation of the hyperbolic Euler equa-

tion and its intuition. To achieve these objectives, a discrete-time model and

a speci¯c time preference function ¯rst appearing in Phelps and Pollak (1968)

are used. The analysis suggests that the derivation of the Euler equations

in hyperbolic-discounting growth models shows similarity with the standard

exponential-discounting case. Moreover, it shows that an interpretation of the

hyperbolic Euler equation for the intertemporal consumption model in Harris

and Laibson (2001) contains model-speci¯c elements and therefore may not be

valid for other dynamic models. This paper also extends some results in Phelps

and Pollak (1968) and Long and Plosser (1983) by obtaining closed-form solu-

tions for some hyperbolic-discounting growth models.
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1. INTRODUCTION

A standard assumption in dynamic economic analysis is the use of an exponen-

tial discount function (i.e., a constant rate of time preference). Important examples

include the neoclassical model of capital accumulation and the intertemporal con-

sumption model. A consequence of this assumption is the time-consistency property:

the decision maker's optimal plan for future behavior chosen at a given date will be

followed subsequently when he/she reconsiders the plan.

On the other hand, a non-exponential discount function (i.e., a time-varying rate of

preference) causes a change in the relative valuation of utility level at di®erent dates

as the decision date evolves. This induces a time-inconsistent plan (Strotz, 1956).

When the decision maker faces such an intertemporal struggle, the actual outcome

will usually depend on whether or not this con°ict is recognized by the decision maker,

and whether or not commitment possibilities are available.

Based on Strotz's theoretical work, as well as empirical evidence in economics and

psychology (such as Thaler, 1981; Ainslie, 1992), Laibson (1997) argues forcefully

that individuals' discount functions are hyperbolic (i.e., the discount rate is higher

in the near future than in the distant future) rather than exponential. For example,

consumers are usually highly impatient about consumption between the current and

next periods, but are more patient about choices between two far-o® periods. Laibson

and his collaborators (Laibson, 1997; Laibson et al., 1998) examine several implica-

tions of hyperbolic discounting, such as the undersaving issues and the use of illiquid

assets as a form of commitment.

Stimulated by these insights, Barro (1999) investigates whether the neoclassical

model of capital accumulation would remain as the workhorse model for dynamic

macroeconomics in the presence of hyperbolic discounting. His analysis suggests a

basically positive answer. Moreover, his work yields testable relationships between
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the extent of commitment ability and the saving rate.

As in Barro (1999), this paper analyzes in¯nite-horizon one-sector growth models

with hyperbolic agents. In fact, the paper is mainly motivated by Barro's analy-

sis.1 Barro (1999) examines the Ramsey model of capital accumulation in which the

representative agent has a general time-varying discount function. He also uses a

continuous-time framework. While the general speci¯cation of time preference (Eq.

(2) in that paper) allows him to obtain results with di®erent degrees of generality, the

derivation seems rather long and complicated. For example, six pages are devoted to

the analysis of the simplest case with log utility function. Moreover, perhaps because

of the di±culty in obtaining sharp results in the general case, he discusses in a num-

ber of occasions the results based on a special hyperbolic discount function similar to

that in Phelps and Pollak (1968) and Laibson (1997).

In order to obtain the solution in a more transparent way and to better understand

its properties, this paper chooses a di®erent strategy: using a discrete-time framework

and starting with the tractable hyperbolic discount function suggested in Phelps and

Pollak (1968). By modifying the standard dynamic programming technique to deal

with the extra complication arising from hyperbolic discounting, it turns out that

the derivation of the intertemporal Euler equation in this case shares much similarity

with that in the standard exponential-discounting case. An interpretation is then

1The analysis of this paper is also motivated by Maskin and Tirole (1988) and, especially, Har-

ris and Laibson (2001), which considers an intertemporal consumption model with stochastic but

exogenous income, borrowing constraints and a constant interest rate. Each of the above papers

obtains the solution by de¯ning two value functions (corresponding to the structure of the problem).

In particular, this paper bears close resemblance with Harris and Laibson (2001) in terms of the

derivation of the hyperbolic Euler equation. However, there are di®erences in the hyperbolic Euler

equations of the intertemporal consumption model (with exogenous interest rate and income pro-

cesses) and the growth model (with interest rate and income processes endogenously determined);

see the last paragraph of Section 3.
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provided for the Euler equation of the class of hyperbolic-discounting growth models.

After deriving and interpreting the Euler equations for growth models with hyper-

bolic agents, this paper illustrates the usefulness of the Euler equation by obtaining

closed-form solutions for some growth models. For this purpose, the paper further as-

sumes a constant-relative-risk-aversion (CRRA) utility function and a Cobb-Douglas

production function. Closed-form solutions are obtained in two special cases: the

neoclassical growth model (with log utility function and complete depreciation of

capital in one period) and the endogenous growth model of the Romer-Rebelo type

(Romer, 1986; Rebelo, 1991). The analysis shows that some results in Phelps and

Pollak (1968) and Long and Plosser (1983) can be generalized.

The rest of this paper is organized as follows. Section 2 derives the Euler equations

for in¯nite-horizon growth models with hyperbolic discounting. Speci¯cally, the agent

maximizes an intertemporal additively-separable utility function, with a particular

form of hyperbolic discount function ¯rst used in Phelps and Pollak (1968). It is

assumed that the agent recognizes the intertemporal consequences of the hyperbolic

preferences but is unable to commit future decision (except through a®ecting the value

of the state variable). The analysis in Section 2 makes clear how the Euler equation

can be obtained in a systematic manner, similar to the familiar case with exponential

discounting. Section 3 provides an interpretation of the hyperbolic Euler equation.

Sections 4 and 5 aim to obtain closed-form solutions, with Section 4 focusing on the

neoclassical model of capital accumulation and Section 5 focusing on the endogenous

growth models. Section 6 concludes.

2. DERIVATION OF THE HYPERBOLIC EULER EQUATION

This section considers growth models with hyperbolic agents. Speci¯cally, it derives

the Euler equations for in¯nite-horizon growth models when the hyperbolic agents

recognize the time-inconsistent problem. (In Strotz's (1956) terminology, this is the
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case of `consistent planning'; in the terminology of O'Donoghue and Rabin (1999), the

hyperbolic agents are `sophisticated', not `naive'.) The analysis serves as a basis for

(a) comparing the hyperbolic-discounting growth models with standard exponential-

discounting growth models, and (b) deriving the results for some special cases of

hyperbolic-discounting growth models in later sections.

In order to compare with existing results in the literature and to highlight the in-

tuition of the hyperbolic Euler equation, the following analysis focuses on a class of

one-sector growth models with fairly standard assumptions. A representative agent

(or dynasty) framework is used, and the representative agent with hyperbolic dis-

counting is assumed to maximize the following lifetime utility function:2

U (ct) + µ
1X

j=1

¯jU (ct+j) ; (1)

where 0 < µ � 1, 0 < ¯ < 1, subscript t indexes time, c is consumption, and the

instantaneous utility function is assumed to possess U 0 > 0, and U 00 < 0. Parameter

¯ is the long-run discount factor (with higher ¯ meaning greater patience), and pa-

rameter µ is the extra factor for short-run discounting on top of ¯. The agent has the

standard exponential discounting (or `perfect altruism' according to Phelps and Pol-

lak (1968), who analyze intergenerational altruism issues) if µ = 1, and has hyperbolic

discounting (or `imperfect altruism' according to Phelps and Pollak (1968)) if µ < 1.

When µ is smaller than 1, the degree of impatience about consumption between the

current and next periods is higher than the degree of impatience between any two

adjacent periods in the future. The term 1¡ µ can be conveniently interpreted as the
degree of hyperbolic discounting.

2The discount function
¡
1; µ¯; µ¯2; :::; µ¯j; :::

¢
in the lifetime utility function (1) is ¯rst used in

Phelps and Pollak (1968). Laibson (1997) and Harris and Laibson (2001) call it `quasi-hyperbolic

discount function' and contrast it with the class of `generalized hyperbolic discount function' used

in the psychology literature; see, for example, Figure I of Laibson (1997). For convenience, this

discount function is simply called hyperbolic discount function in the following analysis.
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The law of motion of this economy (which corresponds to the intertemporal resource

constraint) is given by:

kt+j+1 = (1¡ ±) kt+j + f (kt+j)¡ ct+j ´ m (kt+j)¡ ct+j ; (2)

where 0 � ± � 1, k is capital stock (possibly in per capita term), f (k) is the pro-

duction function (usually in intensive form) relating gross output to capital, and the

function m (k) has the interpretation of undepreciated capital plus current output.

The above speci¯cation is essentially a standard one-sector growth model with the

usual exponential discounting assumption replaced by the possibility of hyperbolic

discounting. As mentioned before, this paper considers the behavior of sophisticated

hyperbolic agents. Following Laibson (1997) and Barro (1999), the equilibrium of

this economy can be interpreted as the outcome of a game played by a series of

autonomous temporal `selves'.

The following analysis focuses on Markov strategies, i.e., the choice variable is

a function of the state variable(s). For the above problem, the state variable is

capital stock and therefore, the Markov strategy is c (k), consumption as a function

of current capital stock. The Markov perfect equilibrium of this economy is de¯ned

as: a strategy sequence fc (kj) ; 8jg constitutes a Markov perfect equilibrium if c (kt)

maximizes self t's intertemporal payo® given the equilibrium choices of other selves.

The problem can be solved by applying the idea of dynamic programming appro-

priately modi¯ed to deal with the complication caused by hyperbolic discounting.

Given the structure of the problem, it is useful to de¯ne two value functions for each

self, one at the current period (when he/she makes the decision) and another at any

subsequent period. Without loss of generality, consider self t. De¯ne W (kt) as the

(maximized level of) intertemporal payo® at the beginning of period t, from the per-

spective of self t, given that the current state variable is kt and all future selves will

behave optimally. Also, de¯ne F (kt+j) ; j ¸ 1, as the future intertemporal payo® at
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the beginning of period t+ j (j ¸ 1), from the perspective of self t and evaluated at

period t+ j, given that the state variable at that period is kt+j and all future selves

will behave optimally. To distinguish between the two value functions, F (kt+j) is

called the continuation-value function and W (kt) the current-value function.

The value functions are related as follows. For the current period t,

W (kt) = max
h(kt)

[U (h (kt)) + µ¯F (m (kt)¡ h (kt))]

= U (c (kt)) + µ¯F (m (kt)¡ c (kt)) ; (3)

where, assuming the presence of an interior solution, the optimal consumption func-

tion c (kt) is characterized by:3

U 0 (c (kt)) = µ¯F
0 (m (kt)¡ c (kt)) : (4)

Also, for any future period (j ¸ 1), the continuation-value functions are related

according to:4

F (kt+j) = U (c (kt+j)) + ¯F (m (kt+j)¡ c (kt+j)) : (5)

The next step is to combine the ¯rst-order condition and the marginal value of

capital condition, similar to the analysis of, for example, Benveniste and Scheinkman

3One can generalize the analysis to allow for the possibility of corner solution (as in Harris and

Laibson, 2001). In that case, the equality sign in (3) should be replaced by an inequality sign. Since

an interior solution is present in many growth models (such as those in Sections 4 and 5), there is

no loss of generality in focusing only on interior solutions for these classes of growth models.
4Note that Eq. (5) links two adjacent continuation-value functions, while Eq. (3) links the

current-value function with the continuation-value function at the next period. This can be seen

from the fact that the discount factor between any two future adjacent periods in Eq. (5) is ¯,

while the discount factor between the current and next periods in Eq. (3) is µ¯. Note also that the

consumption function c (kt) in (3) is chosen by the current self, while c (kt+j) in (5) is chosen by

another self, self t + j. (However, by exploiting the stationarity of the in¯nite-horizon problem, the

optimal choice of self t + j is also characterized by a ¯rst-order condition similar to (4)).
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(1979) for the exponential-discounting case. For the growth model with hyperbolic

discounting, the marginal value of capital is obtained as follows. Di®erentiating the

value function W (kt) with respect to the state variable kt gives:

W 0 (kt) = U
0 (c (kt)) c

0 (kt) + µ¯F
0 (m (kt)¡ c (kt)) [m0 (kt)¡ c0 (kt)]

= U 0 (c (kt))m
0 (kt) ; (6)

where the second equality makes use of the ¯rst-order condition (4). The function

m0 (kt) ´ @m(kt)
@kt

can be interpreted as a one-period (endogenous) gross real interest

rate.

The ¯nal step in obtaining the Euler equation is to combine the above conditions.

With exponential discounting (and therefore, W (k) = F (k) for an in¯nite-horizon

problem), the usual procedure is to immediately combine the ¯rst-order condition and

the marginal value of capital condition. However, with hyperbolic discounting, F 0 (k)

appears in (4) and W 0 (k) appears in (6), and these two functions are di®erent. The

remaining analysis makes use of the relationship between the current-value function

and the continuation-value function. Combining self t + 1's current-value function

(i.e., W (kt+1) with state variable kt+1) and self t's continuation-value function for

period t+ 1 (i.e., F (kt+1) with the same state variable kt+1) gives:

W (kt+1) = U (c (kt+1)) + µ¯F (m (kt+1) ¡ c (kt+1))

= U (c (kt+1)) + µ [F (kt+1)¡ U (c (kt+1))]

= (1¡ µ)U (c (kt+1)) + µF (kt+1) : (7)

Eq. (7) suggests that the current-value function of self t + 1 is related to the

continuation-value function of self t at period t + 1 in a particular way: W (kt+1)

is a weighted average of F (kt+1) and the current-period (maximized) utility level.
5

5An alternative (and perhaps more intuitive) way to look at (7) is as follows:

W (kt+1) = Ut+1 + µ¯Ut+2 + µ¯2Ut+3 + :::
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Di®erentiating (7) with respect to kt+1 gives:

µF 0 (kt+1) = W
0 (kt+1)¡ (1¡ µ)U 0 (c (kt+1)) c0 (kt+1) ; (7a)

where c0 (k) is the marginal propensity to consume (with respect to capital).

Combining (4), (6) and (7a) gives the intertemporal Euler equation for the growth

model with hyperbolic discounting:

U 0 (c (kt)) = µ¯F
0 (kt+1)

= ¯ [W 0 (kt+1)¡ (1¡ µ)U 0 (c (kt+1)) c0 (kt+1)]

= ¯ [m0 (kt+1)¡ (1¡ µ) c0 (kt+1)]U 0 (c (kt+1)) : (8)

Note that when µ = 1, (8) becomes the standard Euler equation (for exponential

discounting):

U 0 (c (kt)) = ¯m
0 (kt+1)U

0 (c (kt+1)) : (8a)

3. INTERPRETATION OF THE HYPERBOLIC EULER EQUATION

For the exponential-discounting case, a standard interpretation of the Euler equa-

tion (8a) comes from the perturbation arguments. Starting from the equilibrium path,

assume that consumption is lowered at period t (by ¢ct, an in¯nitesimal amount) and

increased at period t+ 1 (by m0 (kt+1)¢ct, the product of ¢ct and the gross interest

and

F (kt+1) = Ut+1 + ¯Ut+2 + ¯2Ut+3 + :::

where Ut+j ´ U (c (kt+j)) represents the utility level at period t + j along the equilibrium path.

Combining these two equations yields

µ [F (kt+1) ¡ Ut+1] = W (kt+1) ¡ Ut+1;

which is the same as Eq. (7).
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rate), while holding consumption at other periods constant. The utility level at pe-

riod t decreases by U 0 (ct)¢ct, but the future utility level (evaluated at period t+ 1)

increases by m0 (kt+1)U 0 (ct+1)¢ct. Evaluating both terms at period t, one obtains

the Euler equation (8a) characterizing the equilibrium consumption path.

The above perturbation arguments, however, do not go through in the presence of

hyperbolic discounting, because the sequence of decisions is made by di®erent selves

and the current self cannot commit to a particular consumption path in the future.

Instead, the hyperbolic agent (at a particular period) will ¯gure out how his/her

choice of current consumption would a®ect the stock of capital (the state variable)

and how this change in capital would a®ect the consumption choices of future selves.

When consumption at period t is decreased by ¢ct (from the level of the equilibrium

path), the utility level at period t decreases by U 0 (ct)¢ct, but the future utility level

(evaluated at period t) increases by µ¯F 0 (kt+1)¢ct.6 Combining with the marginal

value of capital condition (6) and the fact that F (kt+1) is a linear combination of

W (kt+1) and the current-period (maximized) utility level U (ct+1), one has the Euler

equation (8).

While the interpretation of Euler equation (8) under hyperbolic discounting is not as

straightforward and intuitive as (8a) for exponential discounting, some discussion can

still be made by looking at the ratio of marginal utility of consumption at the current

period to that at the next period (= U 0 (ct) =U 0 (ct+1)). For exponential discounting,

(8a) shows that the marginal utility ratio equals to the product of the (constant)

discount factor ¯ and the gross interest rate.7 With hyperbolic discounting, Eq. (8)

6Similar argument can be made for the case of exponential discounting. When consumption at

period t is decreased by ¢ct (from the level of the equilibrium path), the utility level at period t de-

creases by U 0 (ct)¢ct, but the future utility level (evaluated at period t) increases by ¯W 0 (kt+1)¢ct.

Using (6), one obtains (8a).
7For the exponential-discounting case, this condition is equivalent to the more familiar condition

that the marginal rate of substitution (= U 0 (ct) =¯U 0 (ct+1)) equal to the gross interest rate (i.e., the
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shows that the marginal utility ratio further depends on two factors: (1¡ µ) and
c0 (kt+1) :

The intuition of this dependence is that in the presence of hyperbolic discounting,

the current self values marginal saving more than marginal consumption at any future

period, since he/she expects future selves to over-consume relative to the consumption

path that he/she prefers those future selves to choose. Since 1¡µ measures the degree
of hyperbolic discounting and thus indicates the magnitude of the di®erence between

future marginal saving and marginal consumption, it matters in the current self's

decision. On the other hand, c0 (kt+1) matters because it determines how a marginal

unit of capital at period t+1 will be divided between saving and consumption. When

either 1 ¡ µ (i.e., the degree of hyperbolic discounting) or c0 (kt+1) (i.e., marginal

propensity to consume in the next period) is higher, the marginal utility ratio is lower,

and thus, current consumption is higher (because of diminishing marginal utility of

consumption).

An interesting observation about the hyperbolic Euler equation (8) for an in¯nite-

horizon growth model is that it di®ers, slightly, from its counterpart for an in¯nite-

horizon bu®er stock consumption model with constant interest rate and exogenous

income, given by Eq. (8) of Harris and Laibson (2001). In particular, Harris and

Laibson (2001, p. 936) suggest that for the intertemporal consumption model with

hyperbolic discounting, the endogenous `e®ective discount factor' is a weighted av-

erage of the short-run discount factor (µ¯) and the long-run discount factor (¯). A

comparison of Eq. (8) of Harris and Laibson (2001) and Eq. (8) of this paper sug-

relative price of current versus next period's consumption). Note that for the hyperbolic-discounting

case, the marginal rate of substitution between the current and next periods (= U 0 (ct) =µ¯U 0 (ct+1))

is not the same as that between any two future adjacent periods (= U 0 (ct+j) =¯U 0 (ct+j+1) ; j ¸ 1).

As a result, it is clearer to base the discussion of the Euler equation (8) on the marginal utility ratio

than on the marginal rate of substitution.
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gests that their interpretation does not extend to the classes of growth models. While

there are similarities in the derivation of the hyperbolic Euler equations for these two

models, the interpretation of the respective Euler equations contains model-speci¯c

elements.

4. THE NEOCLASSICAL MODEL OF CAPITAL ACCUMULATION

In the remaining sections of this paper, the hyperbolic Euler equation (8) is applied

to some growth models. From now on, this paper assumes a Cobb-Douglas production

function and a CRRA utility function:

U (ct+j) =
c1¡½¹t+j ¡ 1
1¡ ½ ; (9)

where ½ (½ > 0) is the relative risk aversion coe±cient. These are standard assump-

tions in the literature; moreover, they are required for the phenomenon of balanced

growth (King et al., 1988). Note that when ½ tends to 1, U (c) in (9) tends to ln c.

This section considers the basic neoclassical model of capital accumulation with a

constant level of technology and labor input.8 The intertemporal utility function is

given by (1) with instantaneous utility function (9). On the other hand, the produc-

tion technology is represented by a standard Cobb-Douglas production function:

yt = Ak
®
t N

1¡® = Ak®t ; (10)

where 0 < ® < 1; the (inelastically supplied) labor input at each period, N , has

been normalized to be 1; and yt and kt are respectively the output and the associated

capital input at period t. (As labor input has been normalized to 1, yt and kt can also

be interpreted respectively as output per worker and capital per worker.) Combining

8It is straightforward to generalize the model to incorporate constant and positive growth rate

of exogenously speci¯ed technology and population. To save space and notation, this paper focuses

on the basic model. The same strategy is followed in Barro (1999, Section III).
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(10) with the intertemporal resource constraint, the law of motion (2) becomes:

kt+j+1 ´ m (kt+j)¡ c (kt+j) = (1¡ ±) kt+j +Ak®t+j ¡ c (kt+j) : (11)

With CRRA utility function (9) and law of motion (11), the Euler equation (8)

becomes: "
c (kt+1)

c (kt)

#½
= ¯

h
1¡ ± + ®Ak®¡1t+1 ¡ (1¡ µ) c0 (kt+1)

i
: (12)

For this economy, a closed-form solution does not exist in general, except for the

special case of ½ = 1 (log utility) and ± = 1 (complete depreciation of capital in one

period).9 With these two restrictions, the Euler equation (12) becomes:

c (kt+1)

c (kt)
= ¯

h
®Ak®¡1t+1 ¡ (1¡ µ) c0 (kt+1)

i
: (12a)

In Appendix 1, it is shown that the hyperbolic Euler equation (12a) for the neo-

classical model with ½ = 1 and ± = 1 is satis¯ed when consumption is a time-invariant

fraction of output:

c (kt) =

"
1¡ ¯®

1¡ ¯® (1¡ µ)

#
Ak®t : (13)

5. WITH ENDOGENOUS GROWTH

This section provides an analysis for endogenous growth models with hyperbolic

agents. Phelps and Pollak (1968, pp. 186-187) conjecture that the endogenous saving

rate of the economy is constant under the following assumptions: (a) a CRRA utility

function, (b) a constant marginal productivity of capital, and (c) no depreciation in

capital. The analysis of this section extends the above results of Phelps and Pollak by

showing that for the endogenous growth models of the Romer-Rebelo type (Romer,

1986; Rebelo, 1991) with CRRA utility function, a closed-form solution (with constant

9With exponential discounting, it is well-known (from, for example, Long and Plosser, 1983) that

a closed-form solution exists under these conditions. The analysis of this section shows that this

result can be extended to hyperbolic discounting.
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saving rates) exists. Moreover, it makes clear that the assumption of no depreciation

of capital is not required.

In this section, the Romer (1986) model with Cobb-Douglas production function,

together with the CRRA utility function (9), will be used. This model incorporates

the AK model (Rebelo, 1991) as a special case, which is essentially the model consid-

ered in Phelps and Pollak (1968).

The production function (of a Cobb-Douglas form) used in Romer (1986) is:

yt ´ f
³
kt; kt

´
= Ak®t k

1¡®
t : (14)

where 0 < ® < 1, kt is the capital stock of an individual agent and kt is the average

capital stock of the economy. As a result, the law of motion of this economy is

described by:

kt+j+1 ´ m
³
kt+j; kt+j

´
¡ c (kt+j) = (1¡ ±) kt+j +Ak®t+jk

1¡®
t+j ¡ c (kt+j) : (15)

With Eqs. (9) and (15), the Euler equation (8) becomes:

"
c (kt+1)

c (kt)

#½
= ¯m0

³
kt+1; kt+1

´
¡ ¯ (1¡ µ) c0 (kt+1) ; (16)

where the gross interest rate is given by:

m0
³
kt; kt

´
´
@m

³
kt; kt

´

@kt
= 1¡ ± +A®k®¡1t k

1¡®
t : (17)

At the equilibrium path of this (homogenous-agent) economy, the following condi-

tion holds:

kt = kt: (18)

In Appendix 2, it is shown that the variables such as the equilibrium level of capital

will evolve according to:

kt+1 ´ m (kt; kt)¡ c (kt) = (1 + °) kt; (19)
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where ° is the (net) growth rate to be determined endogenously. Moreover, it is

shown that Euler equation (16) is satis¯ed when consumption is a constant fraction

of capital (or equivalently, a constant fraction of output given that the production

function (14) is of constant returns to scale with respect to accumulable inputs):

c (kt) = dkt; (20)

where d (0 < a < 1) is a constant to be determined.

Finally, it is shown in Appendix 2 that coe±cients ° and d (which are de¯ned in

(19) and (20) respectively) are determined jointly by:

1 + ° = 1¡ ± +A¡ d; (21)

and

(1¡ ± +A¡ d)½ = ¯ [1¡ ± +A® ¡ (1¡ µ) d] : (22)

It can be observed from (21) and (22) that the values of ° and d depend on the

exogenous parameters µ; ¯; ½; ®; ± and A. Moreover, when ½ = 1 (log utility), it is

straightforward to show that the optimal consumption function is given by:

c (kt) = dkt =

"
1¡ ± +A¡ ¯ (1¡ ± +A®)

1¡ ¯ (1¡ µ)

#
kt: (20a)

6. CONCLUSION

Since Strotz's (1956) seminal work, the time-inconsistency problem has become

well-known. However, not much work has been done on this topic, except a few recent

important studies examining the relevance and implications of hyperbolic discounting.

Given the importance of hyperbolic discounting, this paper provides an analysis of

growth models with hyperbolic agents. It is motivated in particular by the analysis

of Barro (1999) who uses a continuous-time model with a general time preference

function. Unlike Barro, this paper uses a discrete-time model and the speci¯c discount
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function suggested in Phelps and Pollak (1968) and Laibson (1997). Within this

framework, the Euler equations of in¯nite-horizon growth models under hyperbolic

discounting are derived and an interpretation is given.

Compared with Barro's (1999) analysis, this paper emphasizes the transparency

of the derivation of the Euler equation and the intuition of the equation. Moreover,

it shows that a particular interpretation in Harris and Laibson (2001) regarding the

hyperbolic Euler equation (that the endogenous e®ective discount factor is a weighted

average of the short-run discount factor and the long-run discount factor) is speci¯c to

the intertemporal consumption model (with exogenous income and constant interest

rate) and therefore is not necessarily valid for other intertemporal models.

In the derivation of the hyperbolic Euler equation in this paper, there are elements

of generality as well as elements of speciality. The general speci¯cation of m (k) in Eq.

(2) includes many growth models (such as the neoclassical growth model discussed

in Section 4, and some endogenous growth models discussed in Section 5). On the

other hand, only one-sector growth models are considered and one state variable k is

assumed in Eq. (2). This is chosen so that the Euler equation can be easily derived

and interpreted. The procedure can be extended to more sophisticated situation. In

fact, the Euler equation for an endogenous growth model with externality (Romer,

1986) has been considered in Section 5. Similar analysis can also be conducted for

hyperbolic-discounting growth models with more state variables.

This paper also provides closed-form solutions for some special cases of one-sector

growth models with hyperbolic discounting. The two special cases considered in this

paper are: the neoclassical growth model with log utility function and 100% depreci-

ation of capital in one period, and the Romer-Rebelo endogenous growth model. In

both cases, it turns out that the endogenous saving rate is time-invariant. The anal-

ysis in this paper shows that the results for the neoclassical growth model (Long and

Plosser, 1983) can be extended to hyperbolic discounting. Moreover, it makes clear
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the reasons behind a conjecture suggested in Phelps and Pollak (1968) and shows

that some of their results can be extended to the Romer-Rebelo endogenous growth

models.

The transparency of the derivation of the hyperbolic Euler equation suggests that

similar analysis could be useful for future work on other growth models, such as those

involving more realistic yet more complicated situation. For example, an analysis of

the role of government spending on economic growth in the presence of hyperbolic

discounting is currently analyzed in another project.

APPENDIX 1

Assume that consumption is a time-invariant fraction of output:

c (kt) = bAk
®
t ; (A1)

where b (0 < b < 1) is a constant to be determined. From (A1), it follows that c0 (kt) =

b®Ak®¡1t . As a result, (12a) becomes:

bAk®t+1
bAk®t

= ¯
h
®Ak®¡1t+1 ¡ (1¡ µ) b®Ak®¡1t+1

i
:

This leads to

kt+1 = ¯ [1¡ (1¡ µ) b]®Ak®t : (A2)

Also, substituting (A1) and ± = 1 into (11) gives

kt+1 = Ak
®
t ¡ bAk®t = (1¡ b)Ak®t : (A3)

Combining (A2) and (A3), parameter b is determined as:

b =

"
1¡ ¯®

1¡ ¯® (1¡ µ)

#
: (A4)

Substituting (A4) into (A1), the optimal consumption function for this special case

of the neoclassical model of capital accumulation is given by (13) in the text.
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APPENDIX 2

To see that a closed-form solution exists for the Romer-Rebelo model, note that the

marginal product of capital for production function (14) at a given level of average

capital is given by:

f 0
³
kt;kt

´
´
@f

³
kt;kt

´

@kt
= A®k®¡1t k

1¡®
t : (A5)

With (18), the gross interest rate at equilibrium is a constant given by:

m0 (kt;kt) = (1¡ ±) + f 0 (kt; kt) = 1¡ ± +A®: (17a)

Combining the result in (17a) with the idea in endogenous growth theory that the

variables can have sustained growth endogenously in the presence of constant returns

to scale to accumulable inputs (Rebelo, 1991), it is conjectured that the variables

such as the equilibrium level of capital will evolve according to (19).

Since the ¯rst term on the right-hand side of the Euler equation (16) is a constant

at equilibrium (with k = k) according to (17a) and the equilibrium level of capital

stock grows at a constant rate according to (19), it is conjectured that (16) is satis¯ed

when consumption is given by (20).

The reason for the above conjecture is as follows. With consumption function (20),

c0 (kt) = d and thus, the second term on the right-hand side of (16) is constant.

Combining (20) and a constant growth rate according to (19), the left-hand side of

the Euler equation (16) is also constant. As a result, the conjecture of (19) and (20)

is con¯rmed.

The remaining step is to ¯nd the undetermined coe±cients ° in (19) and d in

(20). Substituting (18), (19) and (20) into the law of motion (15) leads to (21). On

the other hand, substituting (18), (19), (20), (21) and (17a) into the Euler equation

(16) leads to (22). Thus, d and ° can be solved simultaneously from (21) and (22).

Speci¯cally, d is obtained from (22) and then ° is determined from (21).
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